
TiddlyWeb Documentation
Release 1.4

Chris Dent

Oct 09, 2017





Contents

1 tiddlyweb Package 1

2 config Module 3

3 control Module 5

4 manage Module 7

5 serializer Module 9

6 specialbag Module 11

7 store Module 13

8 util Module 17

9 Subpackages 19

10 TiddlyWeb 45

Python Module Index 47

i



ii



CHAPTER 1

tiddlyweb Package

For more complete information also see:

• http://tiddlyweb.com/

• http://docs.tiddlyweb.com/

• http://tiddlyweb.readthedocs.org/

TiddlyWeb is a web service and library for managing and manipulating resources useful in the creation of dynamic
wiki-like collections of content and functionality. The model of the data was originally designed for creating custom
TiddlyWiki implementations, where the content of the TiddlyWiki can be saved to the server, and shared among
multiple users.

TiddlyWeb presents an HTTP API for resource management. The API follows, as possible, RESTful principles to
keep the API flexible and scalable. The URLs for this interface are kept in a file called urls.map found in the
tiddlyweb package. urls.map dispatches web requests at specific URLs to specific functions in modules in the
tiddlyweb.web.handler package. urls.map may be located in another place by changing the urls_map
key in tiddlywebconfig.py. There are also mechanisms for overriding storage (see tiddlyweb.store), serialization
(see tiddlyweb.serializer) and authentication (see tiddlyweb.web.challenger and tiddlyweb.
web.extractor) systems. There are also system_plugins and twanager_plugins for further extensibil-
ity.

The primary resources presented by the server are Recipes, Bags and Tiddlers. See the tiddlyweb.model package.

TiddlyWeb includes twanager, a command line tool for doing a variety of TiddlyWeb activities. Run twanager
without arguments for a list of commands.

See the documentation for other modules and packages within tiddlyweb for additional details.

1

http://tiddlyweb.com/
http://docs.tiddlyweb.com/
http://tiddlyweb.readthedocs.org/
http://docs.tiddlyweb.com/tiddlywebconfig.py
http://docs.tiddlyweb.com/recipe
http://docs.tiddlyweb.com/bag
http://docs.tiddlyweb.com/tiddler
http://docs.tiddlyweb.com/twanager


TiddlyWeb Documentation, Release 1.4

2 Chapter 1. tiddlyweb Package



CHAPTER 2

config Module

The configuration of a particular instance of TiddlyWeb, carried around as a dict in the WSGI environ as
tiddlyweb.config.

If there is a tiddlywebconfig.py file in the working directory where twanager or the web server is started, its
values will override the defaults established in this module.

The server administrator may add additional keys to the config via extensions.

Config Keys

system_plugins A list of Python module names that act as plugins for the running server. At server startup time they
are found, compiled, and the function init(config) is called on them, where config is a reference to the
current config. Use this to add functionality to the server that cannot be accomplished from the defaults, such as
adding additional web handlers, storage hooks or overriding existing behaviors.

twanager_plugins A list of Python module names that act as plugins for twanager, adding command line func-
tionality. As with system_plugins init(config) is called.

server_store A list containing a module name and a configuration dictionary. The named module is an implementa-
tion of tiddlyweb.stores.StorageInterface (first looked up in the tiddlyweb.stores package
space, then in sys.path). The configuration is an arbitrary dictionary of information to be passed to the store
(e.g. database username and password).

server_request_filters A list of WSGI applications which, in order, process the incoming requests made to the server.
This can extract, add, or filter information as necessary. The defaults provide query string processing, content
negotiation and establish environ settings.

server_response_filters A list of WSGI applications which, in order, process the outgoing response from the server.
This can transform, log, or handle exceptions as necessary.

server_host The hostname of this server, usually set from whatever starts the server. This is a dictionary with keys:
scheme, host, port.

3



TiddlyWeb Documentation, Release 1.4

server_prefix A URL path portion which is a prefix to every URL the system uses and produces. Use this to host
TiddlyWeb in a subdirectory (e.g. /wiki). Default is ''.

extension_types A dictionary that pairs extension strings used in URLs as human controlled content-negotiation with
the MIME types they represent. Add to this if you add to serializers.

serializers Incoming request Accept headers, or extension MIME types paired with a tiddlyweb.
serializations.Serializer implementation and an outgoing MIME type for that type of serialization.

extractors An extractor is a credential extractor (see tiddlyweb.web.extractors.
ExtractorInterface) that looks in an incoming request to attempt to extract information from it
that indicates a potential user in the system. This config item is an ordered list of extractors, tried in succession
until one returns tiddlyweb.usersign information or there are no more left.

auth_systems A list of challengers available to the system when it needs to ask for a user. (See tiddlyweb.web.
challengers.ChallengerInterface) If there is more than one challenger the user is presented with
a list of those available. If there is only one, the user is automatically directed to just that one. A challenger
needs to work with the extractors system so that the challenger provides something for future requests that the
extractor can extract.

secret A string used to encrypt the cookie installed by some of the challengers and used by the cookie extractor.
NOTE: EVERY INSTALLATION SHOULD CHANGE THIS IN ITS OWN CONFIGURATION.

urls_map The file location of the text file that maps URL paths to Python code, doing method dispatch. Usually it is
better to use plugins to change the available URLs and handlers.

bag_create_policy A policy statement on who or what kind of user can create new bags on the system through the
web API. ANY means any authenticated user can. ADMIN means any user with role ADMIN can. '' means
anyone can.

recipe_create_policy A policy statement on who or what kind of user can create new recipes on the system through
the web API. See bag_create_policy.

log_file Path and filename of the TiddlyWeb log file.

log_level String of loglevel to log. Pick one of CRITICAL, DEBUG, ERROR, INFO, WARNING.

css_uri A URI of a css file that can be used to style the HTML output of the server. See tiddlyweb.
serializations.html for the classes and ids used.

wikitext.default_renderer The default module for rendering tiddler.text to HTML when tiddler.type is
None.

wikitext.type_render_map A dictionary mapping tiddler.type MIME types to modules with a render()
function for turning that type into HTML.

wsgi_server The name of a module that provides a start_server method which starts a server to run this Tiddly-
Web instance. Used by the twanager server command only.

special_bag_detectors A list of functions that take an environ and bag name and return a tuple of two functions:
the first returns the tiddlers in that bag, the second returns one tiddler from that bag.

collections.use_memory If True Tiddler Collections are kept in memory during a single request. Defaults
to False to save memory.

4 Chapter 2. config Module



CHAPTER 3

control Module

control provides routines which integrate the basic model classes with the rest of the system. The model classes
are intentionally simple. The methods here act as controllers on those classes.

These are primarily related to handling recipes.

tiddlyweb.control.determine_bag_for_tiddler(recipe, tiddler, environ=None)
Return the bag which this tiddler would be in if we were to save it to the named recipe rather than to a
bag.

This is done reversing the recipe list and seeing if the tiddler passes the constraint of the bag and its associated
filter. If bag+filter is true, return that bag.

tiddlyweb.control.determine_bag_from_recipe(recipe, tiddler, environ=None)
Given a recipe and a tiddler determine the bag in which this tiddler can be found. This is different
from determine_bag_for_tiddler(). That one finds the bag the tiddler could be in. This is the bag the
tiddler is in.

This is done by reversing the recipe’s list, and filtering each bag according to any filters present. The
resulting tiddlers are checked.

If an indexer is configured use the index to determine if a tiddler exists in a bag.

tiddlyweb.control.filter_tiddlers(tiddlers, filters, environ=None)
Return a generator of tiddlers resulting from filtering the provided iterator of tiddlers by the provided filters.

If filters is a string, it will be parsed for filters.

tiddlyweb.control.get_tiddlers_from_bag(bag)
Yield the individual tiddlers that are in a bag.

The tiddlers return are empty objects that have not been loaded from the store.

Rarely used, see tiddlyweb.store.Store.list_bag_tiddlers().

tiddlyweb.control.get_tiddlers_from_recipe(recipe, environ=None)
Return the list of tiddlers that result from processing the recipe.

This list of tiddlers is unique by title with tiddlers later in the recipe taking precedence over those earlier in the
recipe.

5



TiddlyWeb Documentation, Release 1.4

The tiddlers returned are empty objects (i.e. not loaded from the store).

tiddlyweb.control.readable_tiddlers_by_bag(store, tiddlers, usersign)
Yield those tiddlers which are readable by the current usersign. This means, depending on the read con-
straint on the tiddler's bag's policy , yield or not.

tiddlyweb.control.recipe_template(environ)
Provide a means to specify custom {{ key }} values in recipes which are then replaced with the value
specified in environ['tiddlyweb.recipe_template'].

This allows recipes to be dynamic in the face of conditions in the current request.

6 Chapter 3. control Module



CHAPTER 4

manage Module

manage provides the workings for the twanager command line tool. twanager calls handle(), making avail-
able all commands that have been put into the COMMANDS dictionary by the make_command() decorator. See
tiddlyweb.commands for examples.

Plugins which add commands must be added to the twanager_plugins config setting so they are imported at
the proper time.

tiddlyweb.manage.handle(args)
Dispatch to the proper function for the command given in args[1].

tiddlyweb.manage.make_command()
A decorator that marks the decorated method as a member of the commands dictionary, with associated help.

The pydoc of the method is used in automatically generated :py:func:usage information.

tiddlyweb.manage.usage(args)
List this help

7



TiddlyWeb Documentation, Release 1.4

8 Chapter 4. manage Module



CHAPTER 5

serializer Module

Serialize TiddlyWeb entities for the sake of taking input and sending output.

This module provides the facade for accessing the possibly many modules which act as serializations. It is asked by
calling code to provide a serialization for a given MIME type. Plugins may override what MIME types are handled
and by what modules. See tiddlyweb.config for related configuration settings.

exception tiddlyweb.serializer.BagFormatError
Bases: exceptions.Exception

The provided input is insufficient to form a valid Bag.

exception tiddlyweb.serializer.NoSerializationError
Bases: exceptions.Exception

There is a NoSerialization of this type for the entity.

exception tiddlyweb.serializer.RecipeFormatError
Bases: exceptions.Exception

The provided input is insufficient to form a valid Recipe.

class tiddlyweb.serializer.Serializer(engine, environ=None)
Bases: object

A Serializer is a facade to a Serialization which implements the tiddlyweb.serializations.
SerializationInterface to turn a TiddlyWeb entity into a particular representation or vice versa.

A Serializer can also list collections of entities in a particular representation.

A single Serializer is a reusable tool which can serialize more than one object. You must set serializer.object
after initialization and then again for each subsequent object being serialized.

The following example turns the tiddler into JSON and vice-versa:

tiddler = Tiddler('cow', 'bag')
tiddler.text = 'moo'
serializer = Serializer('json', environ)
serializer.object = tiddler
json_string = serializer.to_string()

9



TiddlyWeb Documentation, Release 1.4

assert '"text": "moo"' in json_string
new_string = json_string.replace('moo', 'meow')
serializer.from_string(new_string)
assert tiddler.text == 'meow'

Note that to_string() and from_string() operate on the Serializer which dispatches to a method in the
SerializationInterface implementation based on the class of the object being serialized.

from_string(input_string)
Turn the provided input_string into a TiddlyWeb entity object of the type of self.object. That
is: populate self.object based on input_string.

list_bags(bags)
Provide a (usually unicode) string representation of the provided bags in the current serialization.

list_recipes(recipes)
Provide a (usually unicode) string representation of the provided recipes in the current serialization.

list_tiddlers(tiddlers)
Provide a (usually unicode) string representation of the tiddlers in the provided Tiddlers
collection.

to_string()
Provide a (usually unicode) string representation of the bag, recipe or tiddler at self.object.

exception tiddlyweb.serializer.TiddlerFormatError
Bases: exceptions.Exception

The provided input is insufficient to form a valid Tiddler.

10 Chapter 5. serializer Module



CHAPTER 6

specialbag Module

Special bags are a feature implemented in plugins that allow non-standard collections of data to be represented as a
bag of tiddlers. An example is remotebag.

If config['special_bag_detectors'] is set, it is a list of functions that take two arguments: a WSGI
environ and a string and return either:

• two functions

• None

The first function yields tiddlers, like tiddlyweb.store.list_bag_tiddlers(). It’s arguments are a WSGI
environ and a string.

The second function returns a single tiddler. It’s arguments are a WSGI environ and a tiddler object (with at
least title and bag set).

exception tiddlyweb.specialbag.SpecialBagError
Bases: exceptions.Exception

A generic exception to be raised by special bag implementations.

tiddlyweb.specialbag.get_bag_retriever(environ, bag)
When loading bag or tiddlers within it from the store, this method is used to inspect
config['special_bag_detectors'] to determine if there is a special handler. If there is, the han-
dler is returned and used for retrieval, otherwise None is returned and the store is used as normal.

11

https://pypi.python.org/pypi/tiddlywebplugins.remotebag


TiddlyWeb Documentation, Release 1.4

12 Chapter 6. specialbag Module



CHAPTER 7

store Module

Store TiddlyWeb entities to a configured persistence layer.

This module provides the facade for accessing one of many possible modules which provide storage for entities. It
provides a general interface to get, put, delete or list entities.

Each of the single entity methods can be augmented with hooks provided by plugins. This allows actions to be
performed based on data in the store being retrieved or updated, such as updating an index.

exception tiddlyweb.store.NoBagError
Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.bag.Bag was found.

exception tiddlyweb.store.NoRecipeError
Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.recipe.Recipe was found.

exception tiddlyweb.store.NoTiddlerError
Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.tiddler.Tiddler was found.

exception tiddlyweb.store.NoUserError
Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.user.User was found.

class tiddlyweb.store.Store(engine, config=None, environ=None)
Bases: object

A Store is a facade to an implementation of tiddlyweb.stores.StorageInterface to handle the
storage and retrieval of all entities in the TiddlyWeb system.

Because of the facade system it is relatively straightforward to create diverse storage systems for all sorts of or
multiple media. In addition stores can be layered to provide robust caching and reliability.

The Store distinguishes between single entities and collections. With single entities, an entity is passed to the
store and the store is asked to get(), put() or delete() it. When get() is used the provided object

13



TiddlyWeb Documentation, Release 1.4

is updated in place in operation that could be described as population. Dispatch is based on the class of the
provided entity.

After any of those operations optional HOOKS are called.

With collections there are specific list methods:

•list_bags()

•list_recipes()

•list_bag_tiddlers()

•list_tiddler_revisions()

•list_users()

Finally a store may optionally provide a search(). How search works and what it even means is up to the
implementation.

delete(thing)
Delete a thing: recipe, bag, tiddler or user.

get(thing)
Get a thing: recipe, bag, tiddler or user.

list_bag_tiddlers(bag)
List all the tiddlers in the bag.

list_bags()
List all the available bags in the system.

list_recipes()
List all the available recipes in the system.

list_tiddler_revisions(tiddler)
List the revision ids of the revisions of the indicated tiddler in reverse chronological older (newest first).

list_users()
List all the available users in the system.

put(thing)
Put a thing, recipe, bag, tiddler or user.

search(search_query)
Search in the store, using a search algorithm specific to the tiddlyweb.stores.
StorageInterface implementation.

exception tiddlyweb.store.StoreEncodingError
Bases: tiddlyweb.store.StoreError

Something about an entity made it impossible to be encoded to the form required by the store.

exception tiddlyweb.store.StoreError
Bases: exceptions.IOError

Base Exception for Store Exceptions.

exception tiddlyweb.store.StoreLockError
Bases: tiddlyweb.store.StoreError

This process was unable to get a lock on the store.

exception tiddlyweb.store.StoreMethodNotImplemented
Bases: tiddlyweb.store.StoreError

14 Chapter 7. store Module



TiddlyWeb Documentation, Release 1.4

A tiddlyweb.stores.StorageInterface does not implement this method.

tiddlyweb.store.get_entity(entity, store)
Load the provided entity from the store if it has not already been loaded. If it can’t be found, still return the
same entity, just keep it empty.

This works for tiddlers, bags and recipes. Not users!

15



TiddlyWeb Documentation, Release 1.4

16 Chapter 7. store Module



CHAPTER 8

util Module

This module provides a centralized collection of miscellaneous utility functions used throughout TiddlyWeb and plu-
gins.

Web specific utilities are in tiddlyweb.web.util.

exception tiddlyweb.util.LockError
Bases: exceptions.IOError

This process was unable to get a lock.

tiddlyweb.util.binary_tiddler(tiddler)
Test if a tiddler represents binary content (e.g. an image).

Return True if this Tiddler has a type which suggests the content of the tiddler is non-textual.

tiddlyweb.util.initialize_logging(config, server=False)
Initialize the system’s logging.

If this code is reached from twanager when there is no sub_command logging is not started. This avoids
spurious tiddlyweb.log files popping up all over the place.

tiddlyweb.util.merge_config(global_config, additional_config, reconfig=True)
Update the global_config with the additional data provided in the dict additional_config. If
reconfig is True, then reread and merge tiddlywebconfig.py so its overrides continue to operate.

Note that if the value of a existing key is a dict, then it is updated (merged) with the value from
additional_config. Otherwise the value is replaced.

Warning: Please ensure (via tests) when using this that it will give the desired results.

tiddlyweb.util.pseudo_binary(content_type)
Test if a tiddler represents textual content that should be treated as a pseudo-binary.

A pseudo binary is defined as textual content for which (this) TiddlyWeb (instance) has no serialization or
is not treated as wikitext. It is identified by a MIME type that looks like text, json, xml or javascript.

TiddlyWeb requires that such content be uploaded encoded as UTF-8.

17



TiddlyWeb Documentation, Release 1.4

tiddlyweb.util.read_config(global_config)
Read in a local configuration override, named tiddlywebconfig.py, from the current working directory. If
the file exists but can’t be imported as valid Python an exception will be thrown, preventing unexpected results.

What is expected in the override file is a dict with the name config.

global_config is a reference to the currently operational main TiddlyWeb config. The read configuration
data is merged into it.

tiddlyweb.util.read_utf8_file(filename)
Read the UTF-8 encoded file at filename and return unicode.

Allow any exceptions to raise.

tiddlyweb.util.renderable(tiddler, environ=None)
Return True if the provided tiddler's type is one that can be rendered to HTML by the wikitext
rendering subsystem.

tiddlyweb.util.sha(data=’‘)
Create a sha1 digest of the data.

tiddlyweb.util.std_error_message(message)
Display message on the stderr console.

tiddlyweb.util.superclass_name(instance)
Given an instance return the lowerclass name of the penultimate class in the hierarchy (the last is object). This is
used to do dynamic method lookups in adaptor classes via serializer.py and store.py while still allowing model
entities to be subclassed. Those subclasses must insure that their __mro__ results in Bag, User, Recipe or Tiddler
in the penultimate slot.

tiddlyweb.util.write_lock(filename)
Create an advisory lock file based on filename.

This is primarily used by the text store.

tiddlyweb.util.write_unlock(filename)
Unlock the write lock associated with filename.

tiddlyweb.util.write_utf8_file(filename, content)
Write the unicode string in content to a UTF-8 encoded file named filename.

Allow any exceptions to raise.

18 Chapter 8. util Module



CHAPTER 9

Subpackages

commands Package

commands Package

Command line tools for TiddlyWeb are accessed via the twanager script. Each command is named by the first
argument passed to the script.

The commands defined in this package are added to a list of available commands using the twanager plugin mech-
anism. That list is extensible via twanager_plugins in tiddlyweb.config and tiddlyweb.manage.
make_command().

Typical commands do things like starting a server, creating a user and listing existing entities.

tiddlyweb.commands.init(config)
Establish the commands during twanager startup.

interact Module

This module provides a twanager command interactwhich provides a Python shell preloaded with the necessary
local variables to interact with the current instance’s store and the entities within. The locals are:

• Recipe

• Bag

• Tiddler

• User

• Policy

• Serializer

• control

• util

19



TiddlyWeb Documentation, Release 1.4

• web

• An environ containing tiddlyweb.config and tiddlyweb.store‘ keys and values.

• A config containing the current tiddlyweb.config.

These are enough to do most operations.

class tiddlyweb.commands.interact.TabCompleter(namespace=None)
Bases: rlcompleter.Completer

Tab completion for the interactive shell that allows pressing the tab character to indicate an indent.

complete(text, state)
Complete the provided text. If there is no text, indent.

class tiddlyweb.commands.interact.TiddlyWebREPL(locals=None, filename=’<console>’)
Bases: code.InteractiveConsole

An interactive console for the current TiddlyWeb instance.

This augments it’s super class by adding tab completion and establishing a set of useful local variables.

tiddlyweb.commands.interact.launch_shell(config, store, args)
Establish the basic environment for the shell and then start it.

filters Package

filters Package

Overarching handler for TiddlyWeb filters.

Filters provide an extensible syntax for limiting any Collection by attributes on the entities in the collection.
Though primarily for Tiddlers, Bags and Recipes can be filtered as well.

The basic filters provide for selecting and sorting on attributes of the entities and for limiting (the number of) entities.
These basic types of filter can be extended with plugins, and the ways attributes are processed can also be extended.

Filters are parsed from a string that is formatted as a CGI query string with parameters and arguments. The parameter
is a filter type. Each filter is processed in sequence: the first processing all the entities handed to it, the next taking
only those that result from the first.

Filters can be extended by adding more parsers to FILTER_PARSERS. Parsers for existing filter types may be ex-
tended as well (see the documentation for each type).

The call signature for a filter is:

filter(entities, indexable=indexable, environ=environ)

The attribute and value for which a filter filters is established in the parsing stage and are set as upvalues of the filter
closure that gets created.

indexable and environ are optional parameters that in special cases allow a select style filter to be optimized
with the use of an index. In the current implementation this is only done when:

• the select filter is the first filter in a stack of filters passed to recursive_filter()

• the entities to be filtered are tiddlers in the context of a bag (this helps to constrain the index)

When both of the above are true the system looks for a module named by tiddlyweb.config['indexer'],
imports it, looks for a function called indexy_query, and passes environ and information about the bag and the
attribute being selected.

20 Chapter 9. Subpackages

http://docs.tiddlyweb.com/filter


TiddlyWeb Documentation, Release 1.4

What index_query does to satisfy the query is up to the module. It should return a list of tiddlers that have been
loaded from the tiddlyweb.store.Store.

If for some reason index_query does not wish to perform the query (e.g. the index cannot satisfy the query) it may
raise FilterIndexRefused and the normal filtering process will be performed.

Note that testing should be done to determine if using an index is of any benefit. In some stores (for example caching
stores) traversing the tiddlers is faster than using an index.

exception tiddlyweb.filters.FilterError
Bases: exceptions.Exception

An exception to throw when an attempt is made to filter on an unavailable attribute.

exception tiddlyweb.filters.FilterIndexRefused
Bases: tiddlyweb.filters.FilterError

A filter index has refused to satisfy a filter with its index.

tiddlyweb.filters.parse_for_filters(query_string, environ=None)
Take a string that looks like a CGI query string and parse it for filters. Return a tuple of a list of filter functions
and a string of whatever was in the query string that did not result in a filter.

tiddlyweb.filters.recursive_filter(filters, entities, indexable=False)
Recursively process the list of filters found by parse_for_filters() against the given list of
entities.

Each next filter processes only those entities that were results of the previous filter.

Misnamed, early versions were more truly recursive.

limit Module

A filter type to limit a group of entities using a syntax similar to SQL Limit:

limit=<index>,<count>
limit=<count>

tiddlyweb.filters.limit.limit(entities, count=0, index=0)
Make a slice of a list of entities based on a count and index.

tiddlyweb.filters.limit.limit_parse(count=‘0’)
Parse the argument of a limit filter for a count and index argument, return a function which does the
limiting.

Exceptions while parsing are passed up the stack.

select Module

A filter type for selecting only some entities, usually tiddlers, from a collection of entities, usually by an
attribute of the tiddlers.

The syntax is:

select=attribute:value # attribute is value
select=attribute:!value # attribute is not value
select=attribute:>value # attribute is greater than value
select=attribute:<value # attribute is less than value

9.2. filters Package 21



TiddlyWeb Documentation, Release 1.4

ATTRIBUTE_SELECTOR is checked for a function which returns True or False for whether the provided value
matches for the entity being tested. The default case is lower case string equality. Other functions may be provided by
plugins. Attributes may be virtual, i.e. not real attributes on entity. For example we can check for the presence of a
tag in a tiddlers tags attribute with:

select=tag:tagvalue

An attribute function takes an entity, an attribute name and a value. It may then do anything it wants with it, and must
return True or False.

• ! negates a selection, getting all those entities that don’t match.

• > gets those entities that sort greater than the value.

• < gets those entities that sort less than the value.

When doing sorting ATTRIBUTE_SORT_KEY is consulted to canonicalize the value. See tiddlyweb.filters.
sort.

tiddlyweb.filters.select.bag_in_recipe(entity, attribute, value)
Return True if the named bag is in the recipe.

tiddlyweb.filters.select.default_func(entity, attribute, value)
Look in the entity for an attribute with the provided value. First real object attributes are checked, then, if
available, extended fields. If neither of these are present, return False.

tiddlyweb.filters.select.field_in_fields(entity, attribute, value)
Return True if the entity has the named field.

tiddlyweb.filters.select.select_by_attribute(attribute, value, entities, negate=False, in-
dexable=None, environ=None)

Select entities where value of attribute matches the provide value.

If negate is True, get those that don’t match.

tiddlyweb.filters.select.select_parse(command)
Parse a select filter string into attributes and arguments and return a function (for later use) which will do
the selecting.

tiddlyweb.filters.select.select_relative_attribute(attribute, value, entities,
greater=False, lesser=False,
environ=None)

Select entities that sort greater or less than the provided value for the provided attribute.

tiddlyweb.filters.select.tag_in_tags(entity, attribute, value)
Return True if the provided entity has a tag of value in its tag list.

tiddlyweb.filters.select.text_in_text(entity, attribute, value)
Return True if the provided entity has the string provided in value within its text attribute.

sort Module

A filter type to sort a collection of entities by some attribute. The syntax is:

sort=attribute # sort ascending
sort=-attribute # sort descending

Atribute is either a real entity attribute or a key in ATTRIBUTE_SORT_KEY that has as its value a function used to
generate a key to pass to the sort. ATTRIBUTE_SORT_KEY can be extended by plugins.

22 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

tiddlyweb.filters.sort.as_int(attribute)
Treat attribute as int if it looks like one.

tiddlyweb.filters.sort.date_to_canonical(datestring)
Take a (TiddlyWiki-style) string of 14 or less digits and turn it into 14 digits for the sake of comparing entity
dates.

tiddlyweb.filters.sort.sort_by_attribute(attribute, entities, reverse=False, environ=None)
Sort a group of entities by some attribute. Inspect ATTRIBUTE_SORT_KEY to see if there is a special function
by which we should generate the value for this attribute.

tiddlyweb.filters.sort.sort_parse(attribute)
Create a function which will sort a collection of entities.

model Package

model Package

Models for TiddlyWeb Entities.

Classes representing the important entities in the TiddlyWeb system.

These are intentionally limited, making no effort to handle their own persistence or presentation. That is the job of the
store and serializer.

bag Module

A module containing the Bag class.

class tiddlyweb.model.bag.Bag(name, desc=u’‘)
Bases: object

A Bag is a virtual container for tiddlers. The bag provides a domain for the tiddlers within identifying those
tiddlers uniquely and optionally acting a topical, functional or authorization container for the tiddlers.

A bag can contain many tiddlers but every tiddler must have a different title. The canonical identifier of a tiddler
is the combination of the containing bag’s name and the tiddler’s title.

Containership is achieved via association: There are no methods on a bag to access the contained tiddlers. These
are found via store.list_bag_tiddlers.

A Bag has a Policy which may be used to control access to both the Bag and the tiddlers within. These
controls are optional and are primarily designed for use within the web handlers.

collections Module

Classes representing collections of bags, recipes and tiddlers.

Because the main reason for having a collection is to send it out over the web, the collections keep track of their
last-modified time and generate a hash suitable for use as an ETag.

class tiddlyweb.model.collections.Collection(title=’‘)
Bases: object

Base class for all collections.

Can be used directly for general collections if required.

9.3. model Package 23



TiddlyWeb Documentation, Release 1.4

A collection acts as generator, yielding one of its contents when iterated.

add(thing)
Add an item to the container, updating the digest and modified information.

hexdigest()
Return the current hex representation of the hash digest of this collection.

class tiddlyweb.model.collections.Container(title=’‘)
Bases: tiddlyweb.model.collections.Collection

A collection of things which have a name attribute.

In TiddlyWeb this is for lists of bags and recipes.

class tiddlyweb.model.collections.Tiddlers(title=’‘, store=None, bag=None, recipe=None)
Bases: tiddlyweb.model.collections.Collection

A Collection specifically for tiddlers.

This differs from the base class in two ways:

The calculation of the digest is more detailed in order to create stong ETags for the collection.

When iterated, if store is set on the Collection, then a yielded tiddler will be loaded from the store to fill in
all its attributes. When a tiddler is added to the collection, if it is already filled, a non-full copy is made and put
into the collection. This is done to save memory and because often the data is not needed.

If collections.use_memory is True in config then the full tiddler is kept in the collection. On servers
with adequate memory this can be more efficient.

add(tiddler)
Add a reference to the tiddler to the container, updating the digest and modified information. If the
tiddler has recently been deleted, resulting in a StoreError, don’t add it.

policy Module

A module containing the Policy class and associated exceptions.

exception tiddlyweb.model.policy.ForbiddenError
Bases: tiddlyweb.model.policy.PermissionsError

The provided user cannot do this action.

exception tiddlyweb.model.policy.PermissionsError
Bases: exceptions.Exception

Base class for Policy violations.

class tiddlyweb.model.policy.Policy(owner=None, read=None, write=None, create=None,
delete=None, manage=None, accept=None)

Bases: object

A container for information about the contraints on a bag or recipe. Both are containers of tiddlers. We
need to be able to control who can do what to do those tiddlers. We also need to be able to control who can
manage those constraints.

The :pu:func:__init__ parameters represent a default policy.

There are six constraints plus one identifying attribute (owner). The constraints are listed below with descrip-
tions of what is allowed if the constraint passes.

read View this entity in lists. View the contained entities.

24 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

write Edit the contained entities that already exist.

create Create new entities in the container.

delete Remove a contained entity.

manage Change the policy itself.

accept Accept the entity into the container without requiring validation.

allows(usersign, constraint)
Is the user encapsulated by the usersign dict allowed to perform the action described by constraint.
If so, return True. If not raise a UserRequiredError (if the user is GUEST) or ForbiddenError
exception.

The dict has a name key with a string value which is a username and a roles key with a list
of roles as its value. Either may match in the constraint. Usersign is usually populated during the
CredentialsExtractor phase of a request.

attributes = [u’read’, u’write’, u’create’, u’delete’, u’manage’, u’accept’, u’owner’]

user_perms(usersign)
For this policy return a list of constraints for which this usersign passes.

exception tiddlyweb.model.policy.UserRequiredError
Bases: tiddlyweb.model.policy.PermissionsError

To do this action a user is required.

tiddlyweb.model.policy.create_policy_check(environ, entity, usersign)
Determine if the user in usersign can create entity type.

recipe Module

The Recipe class.

class tiddlyweb.model.recipe.Recipe(name, desc=u’‘)
Bases: object

A Recipe is an ordered list that represents a program for creating a collection of tiddlers.

Each line in the recipe is the combination of a bag name and a filter string. This implementation uses list
of tuples.

In common usage a recipe contains only strings representing bags and filters, but for the sake of easy testing,
the bag argument can be a Bag object.

A Recipe has a Policy which can be used to control access to the Recipe. These controls are optional and are
primarily designed for use within the web handlers.

get_recipe(template=None)
Return the recipe list, as a list of tuple pairs.

set_recipe(recipe_list)
Set the contents of the recipe list.

tiddler Module

A module containing the Tiddler class and related functions.

9.3. model Package 25



TiddlyWeb Documentation, Release 1.4

class tiddlyweb.model.tiddler.Tiddler(title=None, bag=None)
Bases: object

The primary content object in the TiddlyWiki and TiddlyWeb universe, representing a distinct piece of content,
often vaguely corresponding to a Page in wiki systems. A Tiddler has text and some associated metadata. The
text can be anything, often wikitext in some form, or Javascript code. It is possible for a Tiddler to container
binary content, such as image data.

A Tiddler is intentionally solely a container of data. That is, it has no methods which change the state of
attributes in the Tiddler or manipulate the tiddler. Changing the attributes is done by directly changing the
attributes. This is done to make the Tiddler easier to store and serialize in many ways.

A Tiddler has several attributes:

title The name of the tiddler. Required.

created A string representing when this tiddler was created.

modified A string representing when this tiddler was last changed. Defaults to now.

modifier A string representing a personage that changed this tiddler in some way. This doesn’t necessarily have
any assocation with the tiddlyweb.usersign, though it may.

tags A list of strings that describe the tiddler.

fields An arbitrary dictionary of extended (custom) fields on the tiddler.

text The contents of the tiddler. A string.

revision The revision of this tiddler. The type of a revision is unspecified and is store dependent.

bag The name of the bag in which this tiddler exists, if any.

recipe The name of the recipe in which this tiddler exists, if any.

store A reference to the Store object which retrieved this tiddler from persistent storage.

creator
Get the creator of this tiddler. If it has not been set then use modifier.

Use the creator property instead.

data_members = [’title’, ‘creator’, ‘created’, ‘modifier’, ‘modified’, ‘tags’, ‘fields’, ‘type’, ‘text’]

slots = [’title’, ‘creator’, ‘created’, ‘modifier’, ‘modified’, ‘tags’, ‘fields’, ‘type’, ‘text’, ‘revision’, ‘bag’, ‘recipe’, ‘store’]

tiddlyweb.model.tiddler.current_timestring()
Translate the current UTC time into a TiddlyWiki conformat timestring.

tiddlyweb.model.tiddler.string_to_tags_list(string)
Given a string representing tags (space-delimited, tags containing spaces are enclosed in in double brackets),
parse them into a list of tag strings.

Duplicates are removed.

tiddlyweb.model.tiddler.tags_list_to_string(tags)
Given a list of tags, turn it into the canonical string representation (space-delimited, enclosing tags containing
spaces in double brackets).

tiddlyweb.model.tiddler.timestring_to_datetime(timestring)
Turn a TiddlyWiki timestring into a datetime object.

Will raise ValueError if the input is not a 12 or 14 digit timestring.

26 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

user Module

A class representing a simple user entity.

A User object is not required during TiddlyWeb requests, credentials extractors and policies may work
with arbitrary data for authentication and authorization. However if a locally stored user is required the User may be
used.

class tiddlyweb.model.user.User(usersign, note=None)
Bases: object

A simple representation of a user. A user is a username, an optional password, an optional list of roles, and an
optional note.

add_role(role)
Add the named role (a string) to this user.

check_password(candidate_password)
Check the password for this user. Return True if correct.

del_role(role)
Remove the named role (a string) from this user. If it is not there, do nothing.

list_roles()
List (as a list of strings) the roles that this user has.

set_password(password)
Set the password for this user.

serializations Package

serializations Package

Turn entities to and fro various representations.

This is the base class and interface class used to transform strings of various forms to model objects and model objects
to strings of various forms.

class tiddlyweb.serializations.SerializationInterface(environ=None)
Bases: object

A Serialization is a collection of methods that either turn an input string into the object named by the method, or
turn the object into a string form. A Serialization is not called directly, instead a Serializer facade is used.

The interface is fairly simple: For the core entities that exist in the TiddlyWeb system (bags, recipes and
tiddlers there (optionally) exists <entity>_as and as_<entity> methods in each Serialization.

*_as returns a string form of the entity, perhaps as HTML, Text, YAML, Atom, whatever the Serialization
does.

as_* takes a provided entity and string and updates the skeletal entity to use the information contained in the
string (in the Serialization format).

There are also three supporting methods, list_tiddlers(), list_recipes() and list_bags() that
provide convenience methods for presenting a collection of entities in the Serialization form. A string is returned.

Strings are usually unicode.

If a method doesn’t exist a NoSerializationError is raised and the calling code is expected to do something
intelligent when trapping it.

9.4. serializations Package 27



TiddlyWeb Documentation, Release 1.4

as_bag(bag, input_string)
Take input_string which is a serialized bag and use it to populate the Bag in bag (if possible).

as_recipe(recipe, input_string)
Take input_string which is a serialized recipe and use it to populate the Recipe in recipe (if
possible).

as_tags(string)
Not called directly, but made public for future use. Turn a string into a list of tags.

as_tiddler(tiddler, input_string)
Take input_string which is a serialized tiddler and use it to populate the Tiddler in tiddler (if
possible).

bag_as(bag)
Serialize a Bag into this serializer’s form.

list_bags(bags)
Provided a list of bags, make a serialized list of those bags (e.g. a a list of HTML links).

list_recipes(recipes)
Provided a list of recipes, make a serialized list of those recipes (e.g. a a list of HTML links).

list_tiddlers(bag)
Provided a bag, output the associated tiddlers.

recipe_as(recipe)
Serialize a :py:Recipe into this serializer’s form.

tags_as(tags)
Not called directly, but made public for future use. Turn a list of tags into a serialized list.

tiddler_as(tiddler)
Serialize a Tiddler into this serializer’s form.

html Module

Serialization for HTML.

HEADER and FOOTER can be overridden to change the basic framing of the system.

class tiddlyweb.serializations.html.Serialization(environ=None)
Bases: tiddlyweb.serializations.SerializationInterface

Serialize entities and collections to HTML representations. This is primarily used to create browser based pre-
sentations. No support is provided for turning HTML into entities.

Set css_uri in config to control CSS.

Set tiddlyweb.links in environ to a list of <link> elements to include those links in the output.

bag_as(bag)
Bag as HTML, including a link to the tiddlers within.

list_bags(bags)
Yield the provided bags as HTML.

list_recipes(recipes)
Yield the provided recipes as HTML.

list_tiddlers(tiddlers)
Yield the provided tiddlers as HTML.

28 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

This is somewhat more complex than the other list methods as we need to list the tiddler whether it is a
revision or not, if it is in a bag or recipe or if it is a search result.

recipe_as(recipe)
Recipe as HTML, including a link to the tiddlers within.

tiddler_as(tiddler)
Transform the provided tiddler into an HTML representation. Render the text of the tiddler if its
type is configured.

json Module

Serialization for JSON.

class tiddlyweb.serializations.json.Serialization(environ=None)
Bases: tiddlyweb.serializations.SerializationInterface

Turn entities and collections thereof to and from JSON.

as_bag(bag, input_string)
Turn a JSON dictionary into a bag if it is in the proper form. Include the policy .

as_recipe(recipe, input_string)
Turn a JSON dictionary into a recipe if it is in the proper form. Include the policy .

as_tiddler(tiddler, input_string)
Turn a JSON dictionary into a tiddler. Any keys in the JSON which are not recognized will be ignored.

bag_as(bag)
A bag as a JSON dictionary. Includes the bag’s policy .

list_bags(bags)
Create a JSON list of bag names from the provided bags.

list_recipes(recipes)
Create a JSON list of recipe names from the provided recipes.

list_tiddlers(tiddlers)
List the provided tiddlers as JSON. The format is a list of dicts in the form described by
_tiddler_dict().

If fat=1 is set in tiddlyweb.query include the text of each tiddler in the output.

If render=1 is set in tiddlyweb.query include the rendering of the text of each tiddler in the
output, if the tiddler is renderable.

recipe_as(recipe)
A recipe as a JSON dictionary. Includes the recipe’s policy .

tiddler_as(tiddler)
Create a JSON dictionary representing a tiddler, as described by _tiddler_dict() plus the text of
the tiddler.

If fat=0 is set in tiddlyweb.query do not include the text of the tiddler in the output.

If render=1 is set in tiddlyweb.query include the rendering of the text of the tiddler in the
output, if the tiddler is renderable.

9.4. serializations Package 29



TiddlyWeb Documentation, Release 1.4

text Module

Serialization for plain text.

class tiddlyweb.serializations.text.Serialization(environ=None)
Bases: tiddlyweb.serializations.SerializationInterface

Serialize entities and collections to and from textual representations. This is primarily used by the text Store.

as_recipe(recipe, input_string)
Turn a string into a recipe if possible.

as_tiddler(tiddler, input_string)
Transform a text representation of a tiddler into a tiddler object.

field = ‘text’

fields_as(tiddler)
Turn extended tiddler fields into RFC 822-style header strings.

list_bags(bags)
Return a linefeed separated list of bag names in the bags list.

list_recipes(recipes)
Return a linefeed separated list of recipe names in the recipes list.

list_tiddlers(tiddlers)
Return a linefeed separated list of tiddler titles in the tiddlers list.

If the tiddlers are a collection of revisions, include the revision identifier.

recipe_as(recipe)
Dump a recipe as text.

tiddler_as(tiddler, omit_empty=False, omit_members=None)
Represent a tiddler as a text string: headers, blank line, text.

omit_* arguments are non-standard options, usable only when this method is called directly (outside the
regular Serializer interface)

If omit_empty is True, don’t emit empty Tiddler members.

omit_members can be used to provide a list of members to not include in the output.

tiddler_members = [’creator’, ‘created’, ‘modifier’, ‘modified’, ‘tags’, ‘type’]

stores Package

stores Package

Storage systems for TiddlyWeb.

The base class and Interface for classes used to get and put data into a storage system.

class tiddlyweb.stores.StorageInterface(store_config=None, environ=None)
Bases: object

An implementation of the StorageInterface is a collection of methods that either store an object or retrieve an
object. It is not usually access directly but instead called through a Store facade.

30 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

The interface is fairly simple: For the data entities that exist in the TiddlyWeb system there (optionally) exists
<entity>_put, <entity>_get and <entity>_delete methods.

When <entity>_get is used, an empty object is provided. This object is filled by the store method.

There are also five supporting methods, list_recipes(), list_bags(), list_users(),
list_bag_tiddlers(), and list_tiddler_revisions() that provide methods for getting a col-
lection.

It is useful to understand the classes in the tiddlyweb.model package when implementing new StorageIn-
terface classes.

If a method is not implemented by the StorageInterface a StoreMethodNotImplemented exception is
raised and the calling code is expected to handle that intelligently.

It is somewhat common to not implement list_tiddler_revisions(). When this is done it means the
instance does not support revisions.

bag_delete(bag)
Remove bag from the store, including the tiddlers contained by the bag.

bag_get(bag)
Get the indicated bag from the store.

bag_put(bag)
Put bag into the store.

list_bag_tiddlers(bag)
Retrieve a list of all tiddler objects in the named bag.

list_bags()
Retrieve a list of all bag objects in the system.

list_recipes()
Retrieve a list of all recipe objects in the system.

list_tiddler_revisions(tiddler)
Retrieve a list of all the revision identifiers for the one tiddler.

list_users()
Retrieve a list of all user objects in the system.

recipe_delete(recipe)
Remove the recipe from the store, with no impact on the recipe’s tiddlers.

recipe_get(recipe)
Get the indicated recipe from the store.

recipe_put(recipe)
Put recipe into the store.

search(search_query)
Search the entire tiddler store for search_query.

How search operates is entirely dependent on the StorageInterface implementation. The only requirement
is that an iterator of tiddler objects is returned.

tiddler_delete(tiddler)
Delete tiddler (and all its revisions) from the store.

tiddler_get(tiddler)
Get a tiddler from the store, returning a populated tiddler object. tiddler.creator and tiddler.
created are based on the modifier and modified of the first revision of a tiddler.

9.5. stores Package 31



TiddlyWeb Documentation, Release 1.4

tiddler_put(tiddler)
Put tiddler into the store.

user_delete(user)
Delete user from the store.

This will remove the user object but has no impact on other entities which may have been modified by the
user.

user_get(user)
Get user from the store.

user_put(user)
Put user into the store.

text Module

A text-based StorageInterface that stores entities in a hierarchy of directories in the filesystem.

class tiddlyweb.stores.text.Store(store_config=None, environ=None)
Bases: tiddlyweb.stores.StorageInterface

A StorageInterface which stores text-based representations in a collection of directories and files.

Some of the entities are serialized to and from text by the text Serializer.

bag_delete(bag)
Delete bag and the tiddlers within from the system.

bag_get(bag)
Fill bag with data from the store.

bag_put(bag)
Put bag into the store.

list_bag_tiddlers(bag)
List all the tiddlers in the provided bag.

list_bags()
List all the bags in the store.

list_recipes()
List all the recipes in the store.

list_tiddler_revisions(tiddler)
List all the revisions of one tiddler, returning a list of ints.

list_users()
List all the users in the store.

recipe_delete(recipe)
Remove a recipe, irrevocably, from the system. No impact on tiddlers.

recipe_get(recipe)
Fill recipe with data in the store.

recipe_put(recipe)
Put recipe into the store.

search(search_query)
Search in the store for tiddlers that match search_query. This is intentionally implemented as a
simple and limited grep through files.

32 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

tiddler_delete(tiddler)
Irrevocably remove tiddler from the filesystem.

tiddler_get(tiddler)
Fill tiddler with data from the store.

tiddler_put(tiddler)
Write a tiddler into the store. We only write if the tiddler’s bag already exists. Bag creation is a
separate action.

user_delete(user)
Delete user from the store.

user_get(user)
Fill user with data from the store.

user_put(user)
Put user data into the store.

web Package

web Package

The routines, modules, etc. that are involved in the presentation and handling of content over HTTP.

These are the parts that makes it TiddlyWeb, not Tiddly something else.

challenge Module

WSGI App for running the base challenge system, which lists and links to the available challengers. If there is
only one challenger, redirect to it.

tiddlyweb.web.challenge.base(environ, start_response)
The basic listing page that shows all available challenger systems. If there is only one challenger, we
redirect to that instead of listing.

tiddlyweb.web.challenge.challenge_get(environ, start_response)
Dispatch a GET request to the chosen challenger.

tiddlyweb.web.challenge.challenge_post(environ, start_response)
Dispatch a POST request to the chosen challenger.

extractor Module

Extract of user credentials from incoming web requests. UserExtract passes to a stack of extractors. If an
extractor returns something other than None, we have found valid data with which to set tiddlyweb.
usersign.

class tiddlyweb.web.extractor.UserExtract(application)
Bases: object

WSGI Middleware to set the tiddlyweb.usersign, if it can be found in the request.

9.6. web Package 33



TiddlyWeb Documentation, Release 1.4

listentities Module

Common code used for listing bags and recipes in HTTP responses.

tiddlyweb.web.listentities.list_entities(environ, start_response, method_name,
store_list=None, serializer_list=None)

Get an optionally filtered list of all the bags or recipes the current tiddlyweb.usersign can read.

negotiate Module

WSGI Middleware to do a limited version of content negotiation and put the type in tiddlyweb.type. On GET and
HEAD requests the Accept header is examined. On POST and PUT, Content-Type. If extensions are provided
on a URI used in a GET request if the extension matches something in extension_types in config, the type
indicated by the extension wins over the Accept header.

class tiddlyweb.web.negotiate.Negotiate(application)
Bases: object

Perform a form of content negotiation to provide information to the WSGI environment that will later be used
to choose serializers.

tiddlyweb.web.negotiate.figure_type(environ)
Determine either the Content-Type (for POST and PUT) or Accept header (for GET) and put that infor-
mation in tiddlyweb.type in the WSGI environment.

query Module

WSGI Middleware that extracts CGI parameters from the QUERY_STRING and puts them in tiddlyweb.query
in the environ in the same structure that cgi.py uses (dictionary of lists). If the current request is a POST of HTML
form data, parse that too.

class tiddlyweb.web.query.Query(application)
Bases: object

Extract CGI parameter data from QUERY_STRING and POSTed form data.

extract_query(environ)
Read the QUERY_STRING and body (if a POSTed form) to extract query parameters. Put the results in
tiddlyweb.query in environ. The query names and values are decoded from UTF-8 to unicode.

If there are file uploads in posted form data, the files are not put into tiddlyweb.query. Instead the
file handles are appended to tiddlyweb.input_files.

sendentity Module

Send a bag or recipe out over HTTP, first serializing to the correct type.

This consolidates common code for bags and recipes.

tiddlyweb.web.sendentity.send_entity(environ, start_response, entity)
Send a bag or recipe out over HTTP, first serializing to the correct type. If an incoming Etag validates,
raise a 304 response.

34 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

sendtiddlers Module

Routines related to sending a list of tiddlers out to the web, including optionally filtering those tiddlers and
validating cache-oriented request headers.

tiddlyweb.web.sendtiddlers.send_tiddlers(environ, start_response, tiddlers=None)
Output the tiddlers contained in the provided Tiddlers collection in a Negotiated representa-
tion.

serve Module

Functions and Classes for running a TiddlyWeb server, including optionally a built in web server.

class tiddlyweb.web.serve.Configurator(application, config)
Bases: object

WSGI middleware to set tiddlyweb.config in environ for every request from config.

class tiddlyweb.web.serve.RequestStarter(application)
Bases: object

WSGI middleware that logs basic request information and cleans PATH_INFO in the environment.

PATH_INFO cleaning is done to ensure that there is a well known encoding of special characters and to support
/ in entity names (see clean_path_info()).

clean_path_info(environ)
Clean PATH_INFO in the environment.

This is necessary because WSGI servers tend to decode the URI before putting it in PATH_INFO. This
means that uri encoded data, such as the %2F encoding of /will be decoded before we get to route dispatch
handling, by which time the / is treated as a separator. People say that the right thing to do here is not use
%2F. This is hogwash. The right thing to do is not decode PATH_INFO. In this solution if REQUEST_URI
is present we use a portion of it to set PATH_INFO.

tiddlyweb.web.serve.load_app(app_prefix=None, dirname=None)
Create our application from a series of layers. The innermost layer is a Selector application based on
urls_map defined in config. This is surrounded by wrappers, which either set something in the en-
vironment, modify the request, or transform the response. The wrappers are WSGI middleware defined by
server_request_filters and server_response_filters in tiddlyweb.config.

tiddlyweb.web.serve.start_server(config)
Start a simple webserver, from wsgiref, to run our app.

util Module

General utility routines shared by various web related modules.

tiddlyweb.web.util.bag_etag(environ, bag)
Construct an etag for a bag.

tiddlyweb.web.util.bag_url(environ, bag, full=True)
Construct a URL for a bag.

tiddlyweb.web.util.check_bag_constraint(environ, bag, constraint)
Check to see if the provided bag allows the current tiddlyweb.usersign to perform the action described
by constraint. Lets NoBagError raise if the bag does not exist.

This is a web util because user and store come from the WSGI environ.

9.6. web Package 35



TiddlyWeb Documentation, Release 1.4

tiddlyweb.web.util.check_incoming_etag(environ, etag_string, cache_control=’no-cache’,
last_modified=None, vary=’Accept’)

Raise 304 if the provided etag_string is the same as that found in the If-None-Match header of the
incoming request.

Return incoming_etag to indicate if an etag was there but did not match.

tiddlyweb.web.util.check_last_modified(environ, last_modified_string, etag=’‘,
cache_control=’no-cache’, vary=’Accept’)

Raise 304 if an If-Modified-Since header matches last_modified_string.

tiddlyweb.web.util.content_length_and_type(environ)
For PUT or POST request there must be Content-Length and Content-Type headers. Raise 400 if not
present in the request.

tiddlyweb.web.util.datetime_from_http_date(http_datestring)
Turn an HTTP formatted date into a datetime object. Return None if the date string is invalid.

tiddlyweb.web.util.encode_name(name)
Encode a unicode value as utf-8 and then URL encode that string. Use for entity titles in URLs.

tiddlyweb.web.util.entity_etag(environ, entity)
Construct an Etag from the digest of the JSON reprepresentation of an entity.

The JSON representation provides a reasonably repeatable and unique string of data.

tiddlyweb.web.util.escape_attribute_value(text)
Escape common HTML character entities, including double quotes in attribute values

This assumes values are enclosed in double quotes (key=”value”).

tiddlyweb.web.util.get_route_value(environ, name)
Retrieve and decode name from data provided in WSGI route.

If name is not present in the route, allow KeyError to raise.

tiddlyweb.web.util.get_serialize_type(environ, collection=False, accept_type=False)
Look in the environ to determine which serializer should be used for this request.

If collection is True, then the presence of an extension on the URI which does not match any serializer
should lead to a 415.

tiddlyweb.web.util.handle_extension(environ, resource_name)
Look for an extension (as defined in config) on the provided resource_name and trim it off to give the
“real” resource name.

tiddlyweb.web.util.html_encode(text)
Encode &, < and > entities in text that will be used in or as HTML.

tiddlyweb.web.util.html_frame(environ, title=’‘)
Return the header and footer from the current HTML serialization.

tiddlyweb.web.util.http_date_from_timestamp(timestamp)
Turn a modifier or created tiddler timestamp into a properly formatted HTTP date. If the timestamp is invalid
use the current time as the timestamp.

tiddlyweb.web.util.make_cookie(name, value, mac_key=None, path=None, expires=None,
httponly=True, domain=None)

Create a cookie string, optionally with a MAC, path and expires value. If expires is provided, its value should
be in seconds.

tiddlyweb.web.util.read_request_body(environ, length)
Read the wsgi.input handle to get the request body.

36 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

Length is a required parameter because it is tested for existence earlier in the process.

tiddlyweb.web.util.recipe_etag(environ, recipe)
Construct an etag for a recipe.

tiddlyweb.web.util.recipe_url(environ, recipe, full=True)
Construct a URL for a recipe.

tiddlyweb.web.util.server_base_url(environ)
Using information in tiddlyweb.config, construct the base URL of the server, without the trailing /.

tiddlyweb.web.util.server_host_url(environ)
Generate the scheme and host portion of our server url.

tiddlyweb.web.util.tiddler_etag(environ, tiddler)
Construct an etag for a tiddler from the tiddler’s attributes, but not its text.

tiddlyweb.web.util.tiddler_url(environ, tiddler, container=’bags’, full=True)
Construct a URL for a tiddler.

validator Module

A collection of routines for validating, santizing and otherwise messing with content coming in from the web to be
tiddlers, bags or recipes.

The validators can be extended by adding functions to the BAG_VALIDATORS, RECIPE_VALIDATORS and
TIDDLER_VALIDATORS. The functions take an entity object, and an optional WSGI environ dict.

exception tiddlyweb.web.validator.InvalidBagError
Bases: exceptions.Exception

The provided bag has not passed a validation routine and has been rejected. The caller should stop processing
and return an error to calling code or user-agent.

exception tiddlyweb.web.validator.InvalidRecipeError
Bases: exceptions.Exception

The provided recipe has not passed a validation routine and has been rejected. The caller should stop pro-
cessing and return an error to calling code or user-agent.

exception tiddlyweb.web.validator.InvalidTiddlerError
Bases: exceptions.Exception

The provided tiddler has not passed a validation routine and has been rejected. The caller should stop
processing and return an error to calling code or user-agent.

tiddlyweb.web.validator.sanitize_desc(entity, environ)
Strip any dangerous HTML which may be present in a bag or recipe description.

tiddlyweb.web.validator.sanitize_html_fragment(fragment)
Santize an HTML fragment, returning a copy of the fragment that has been cleaned up.

tiddlyweb.web.validator.validate_bag(bag, environ=None)
Pass the bag to each of the functions in BAG_VALIDATORS, in order, either changing the content of the bags’s
attributes, or if some aspect of the bag can not be accepted raising InvalidBagError.

BAG_VALIDATORS may be extended by plugins.

validate_bag is called whenever a bag is PUT via HTTP.

tiddlyweb.web.validator.validate_recipe(recipe, environ=None)
Pass the recipe to each of the functions in RECIPE_VALIDATORS, in order, either changing the content of
the recipes’s attributes, or if some aspect of the recipe can not be accepted raising InvalidRecipeError.

9.6. web Package 37



TiddlyWeb Documentation, Release 1.4

RECIPE_VALIDATORS may be extended by plugins.

validate_recipe is called whenever a recipe is PUT via HTTP.

tiddlyweb.web.validator.validate_tiddler(tiddler, environ=None)
Pass the tiddler to each of the functions in TIDDLER_VALIDATORS, in order, either changing
the content of the tiddler’s attributes, or if some aspect of the tiddler can not be accepted raising
InvalidTiddlerError.

TIDDLER_VALIDATORS is an empty list which may be extended by plugins.

validate_tiddler is called from web handlers, when the accept constraint on the policy of the
bag containing the tiddler does not pass.

wsgi Module

WSGI Middleware apps that haven’t gotten around to being extracted to their own modules.

class tiddlyweb.web.wsgi.EncodeUTF8(application)
Bases: object

WSGI Middleware to ensure that the unicode content sent out the pipe is encoded to UTF-8. Within the appli-
cation string-based content is unicode (i.e. not encoded).

class tiddlyweb.web.wsgi.Header(application)
Bases: object

If REQUEST_METHOD is HEAD, change it internally to GET and consume the generated output so the response
has no body.

class tiddlyweb.web.wsgi.PermissionsExceptor(application)
Bases: object

Trap permissions exceptions and turn them into HTTP exceptions so the errors are propagated to
clients.

class tiddlyweb.web.wsgi.SimpleLog(application)
Bases: object

WSGI Middleware to write a very simple log to stdout.

Borrowed from Paste Translogger

format = ‘%(REMOTE_ADDR)s - %(REMOTE_USER)s [%(time)s] “%(REQUEST_METHOD)s %(REQUEST_URI)s %(HTTP_VERSION)s” %(status)s %(bytes)s “%(HTTP_REFERER)s” “%(HTTP_USER_AGENT)s”’

write_log(environ, req_uri, status, size)
Write the log info out in a formatted form to logging.info.

This is rather more complex than desirable because there is a mix of str and unicode in the gathered
data and it needs to be made acceptable for output.

class tiddlyweb.web.wsgi.StoreSet(application)
Bases: object

WSGI Middleware that sets our choice of Store in the environ. That is, initialize the store for each request.

class tiddlyweb.web.wsgi.TransformProtect(application)
Bases: object

WSGI Middleware to add a Cache-Control: no-transform` header so that mobile companies that
transcode content over their 3G (etc) networks don’t, as it will break various JavaScript things, including Tid-
dlyWiki.

38 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

Subpackages

challengers Package

challengers Package

The ChallengerInterface class.

class tiddlyweb.web.challengers.ChallengerInterface
Bases: object

An interface for challenging users for authentication purposes. The chalenger basically does whatever is required
and may result in doing something to a response that causes the user agent’s next request to pass an extractor.

Though there is no requirement for there to be a one to one correspondence between a Challenger and an
Extractor, it will often be the case that a Challenger will need a particular Extractor in order to be effective.

A Challenger is a WSGI application.

challenge_get(environ, start_response)
Respond to a GET request.

challenge_post(environ, start_response)
Respond to a POST request.

cookie_form Module

A challenger that presents or validates a form for getting a username and password.

class tiddlyweb.web.challengers.cookie_form.Challenger
Bases: tiddlyweb.web.challengers.ChallengerInterface

A simple login challenger that asks the user agent, via an HTML form, for a username and password and vaidates
it against a User entity in the store.

If valid, a cookie is set in the response. This is used in subsequent requests by the simple_cookie
credentials extractor.

challenge_get(environ, start_response)
Respond to a GET request by sending a form.

challenge_post(environ, start_response)
Respond to a POST by processing data sent from a form. The form should include a username and pass-
word. If it does not, send the form aagain. If it does, validate the data.

desc = ‘TiddlyWeb username and password’

extractors Package

extractors Package

The ExtractorInterface class, used to extract and validate information in web requests that may identify a user. Often,
but not always, that information was originally created by a challenger.

class tiddlyweb.web.extractors.ExtractorInterface
Bases: object

An interface for user extraction.

9.6. web Package 39



TiddlyWeb Documentation, Release 1.4

Given a WSGI environ, figure out if the request contains information which can be used to identify a valid user.
If it does, return a dict including information about that user.

If it doesn’t return False.

extract(environ, start_response)
Look at the incoming request and try to extract a user.

load_user(environ, usersign)
Check the User database in the store for a user matching this usersign. The user is not required to exist,
but if it does it can be used to get additional information about the user, such as roles.

http_basic Module

A very simple extractor that looks at the HTTP Authorization header and looks for Basic auth information
therein.

class tiddlyweb.web.extractors.http_basic.Extractor
Bases: tiddlyweb.web.extractors.ExtractorInterface

An extractor for HTTP Basic Authentication. If there is an Authorization header attempt to get a username
and password out of it and compare with User information in the Store. If the password is valid, return the
user information. Otherwise return False.

extract(environ, start_response)
Look in the request for an Authorization header.

simple_cookie Module

An extractor that looks at a cookie named tiddlyweb_user.

class tiddlyweb.web.extractors.simple_cookie.Extractor
Bases: tiddlyweb.web.extractors.ExtractorInterface

Look in the headers for a cookie named tiddlyweb_user.

If it is there and the associated hashed value validates against a server side secret, return the indicated user.

extract(environ, start_response)
Extract the cookie, if there, from the headers and attempt to validate its contents.

handler Package

handler Package

Convenience routines for presenting the root of the web server.

Here because nowhere else seems right.

tiddlyweb.web.handler.root(environ, start_response)
Convenience application to provide an entry point at root.

bag Module

Methods for accessing Bag entities.

40 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

tiddlyweb.web.handler.bag.delete(environ, start_response)
Handle DELETE on a single bag URI.

Remove the bag and the tiddlers within from the store.

How the store chooses to handle remove and what it means is up to the store.

tiddlyweb.web.handler.bag.get(environ, start_response)
Handle GET on a single bag URI.

Get a representation in some serialization determined by tiddlyweb.web.negotiate of a bag (the bag
itself, not the tiddlers within).

tiddlyweb.web.handler.bag.get_tiddlers(environ, start_response)
Handle GET on a tiddlers-within-a-bag URI.

Get a list representation of the tiddlers in a bag.

The information sent is dependent on the serialization chosen via tiddlyweb.web.negotiate.

tiddlyweb.web.handler.bag.list_bags(environ, start_response)
Handle GET on the bags URI.

List all the bags that are readable by the current usersign.

The information sent is dependent on the serialization chosen via tiddlyweb.web.negotiate.

tiddlyweb.web.handler.bag.put(environ, start_response)
Handle PUT on a single bag URI.

Put a bag to the server, meaning the description and policy of the bag, if policy allows.

chronicle Module

A chronicle is a stack of tiddlers, usually revisions of one tiddler. By POSTing a chronicle of tiddlers originally
named A to tiddler B, it is possible to rename a tiddler while preserving revision history.

tiddlyweb.web.handler.chronicle.post_revisions(environ, start_response)
Handle a POST of a chronicle of tiddlers at a tiddler revisions URI.

Take a collection of JSON tiddlers, each with a text key and value, and process them into the store.

recipe Module

Methods for accessing Recipe entities.

tiddlyweb.web.handler.recipe.delete(environ, start_response)
Handle DELETE on a single recipe URI.

Delete a recipe. This just removes the recipe, not any associated bags or tiddlers.

tiddlyweb.web.handler.recipe.get(environ, start_response)
Handle GET on a single recipe URI.

Get a representation in some serialization determined by tiddlyweb.web.negotiate of a recipe (just
the recipe itself, not the tiddlers it can produce).

tiddlyweb.web.handler.recipe.get_tiddlers(environ, start_response)
Handle GET on a tiddlers-within-a-recipe URI.

Get a list representation of the tiddlers generated from a recipe.

9.6. web Package 41



TiddlyWeb Documentation, Release 1.4

The information sent is dependent on the serialization chosen via tiddlyweb.web.negotiate.

tiddlyweb.web.handler.recipe.list_recipes(environ, start_response)
Handle GET on the recipes URI.

List all the recipes that are readable by the current usersign.

The information sent is dependent on the serialization chosen via tiddlyweb.web.negotiate.

tiddlyweb.web.handler.recipe.put(environ, start_response)
Handle PUT on a single recipe URI.

Put a recipe to the server, meaning the description, policy and recipe list of the recipe, if policy allows.

search Module

Handle searches for tiddlers if the configured store supports search.

tiddlyweb.web.handler.search.get(environ, start_response)
Handle GET on the search URI.

Perform a search against the store.

What search means and what results are returned is dependent on the search implementation (if any) in the
chosen store.

tiddlyweb.web.handler.search.get_search_query(environ)
Inspect tiddlyweb.query in the environment to find the search query in a parameter named q.

tiddlyweb.web.handler.search.get_tiddlers(environ)
Call search in the store to get the generator of tiddlers matching the query found by
get_search_query().

tiddler Module

Methods for accessing Tiddler entities.

tiddlyweb.web.handler.tiddler.delete(environ, start_response)
Handle DELETE on a single tiddler URI.

Delete a tiddler from the store.

What delete means is up to the store.

tiddlyweb.web.handler.tiddler.get(environ, start_response)
Handle GET on a single tiddler or tiddler revision URI.

Get a representation in some serialization determined by tiddlyweb.web.negotiate of a tiddler.

tiddlyweb.web.handler.tiddler.get_revisions(environ, start_response)
Handle GET on the collection of revisions of single tiddler URI.

Get a list representation in some serialization determined by tiddlyweb.web.negotiate of the revisions
of a tiddler.

tiddlyweb.web.handler.tiddler.put(environ, start_response)
Handle PUT on a single tiddler URI.

Put a tiddler to the server.

42 Chapter 9. Subpackages



TiddlyWeb Documentation, Release 1.4

tiddlyweb.web.handler.tiddler.validate_tiddler_headers(environ, tiddler)
Check ETag and last modified header information to see if a) on GET the user agent can use its cached tiddler
b) on PUT we have edit contention.

wikitext Package

wikitext Package

Functions for rendering any tiddler that has been identified as wikitext into the rendered form (usually HTML) of
that wikitext.

Wikitext rendering is engaged when a tiddler is requested via a GET, when the negotiated media-type of the request is
html, and when tiddler.type is either None or in the keys of the dictionary associated with the tiddlyweb.
config['wikitext.type_render_map'].

When tiddler.type is None, the renderer named in tiddlyweb.config['wiktext.
default_renderer'] is used. This is either a module in the tiddlyweb.wikitext package, or a
module on sys.path.

When tiddler.type is something other than None, the renderer is determined by looking up the type in
tiddlyweb.config['wikitext.type_render_map']. The found value is a module of the same type
described above.

The renderer module has a function render.

tiddlyweb.wikitext.render_wikitext(tiddler=None, environ=None)
Take a tiddler and render wikitext in tiddler.text to some kind of HTML format.

raw Module

A default simple wikitext renderer which does not render the wikitext but instead wraps it in pre tags.

tiddlyweb.wikitext.raw.render(tiddler, environ)
Wrap HTML encoded wikitext with pre tags.

9.7. wikitext Package 43



TiddlyWeb Documentation, Release 1.4

44 Chapter 9. Subpackages



CHAPTER 10

TiddlyWeb

TiddlyWeb is an open source HTTP API for storing and accessing flexible and composable microcontent. It is also a
toolkit for tiddlers on the web and a robust server side for TiddlyWiki.

TiddlyWeb by itself provides the base HTTP API, storage engine and default serializations. A large variety of plugins
provide additional functionality.

Quick Start

The quickest way to get going with an operational installation of TiddlyWeb is to install tiddlywebwiki.

See the quick start documentation for that.

Additional Documentation

Besides package documentation starting at tiddlyweb Package, additional documentation can be found at http:
//tiddlyweb.com and http://docs.tiddlyweb.com/.

Note that all of this documentation is in a constant state of flux, as it should be. If you find an error please help to fix
it.

Source

The TiddlyWeb source is kept at GitHub.

• genindex

• modindex

• search

45

http://docs.tiddlyweb.com/HTTP%20API
http://docs.tiddlyweb.com/tiddler
http://tiddlywiki.com/
https://pypi.python.org/pypi?%3Aaction=search&term=tiddlywebplugins
https://pypi.python.org/pypi/tiddlywebwiki
http://docs.tiddlyweb.com/Quick%20Start
http://tiddlyweb.com
http://tiddlyweb.com
http://docs.tiddlyweb.com/
https://github.com/tiddlyweb/tiddlyweb


TiddlyWeb Documentation, Release 1.4

46 Chapter 10. TiddlyWeb



Python Module Index

t
tiddlyweb, 1
tiddlyweb.commands, 19
tiddlyweb.commands.interact, 19
tiddlyweb.config, 3
tiddlyweb.control, 5
tiddlyweb.filters, 20
tiddlyweb.filters.limit, 21
tiddlyweb.filters.select, 21
tiddlyweb.filters.sort, 22
tiddlyweb.manage, 7
tiddlyweb.model, 23
tiddlyweb.model.bag, 23
tiddlyweb.model.collections, 23
tiddlyweb.model.policy, 24
tiddlyweb.model.recipe, 25
tiddlyweb.model.tiddler, 25
tiddlyweb.model.user, 27
tiddlyweb.serializations, 27
tiddlyweb.serializations.html, 28
tiddlyweb.serializations.json, 29
tiddlyweb.serializations.text, 30
tiddlyweb.serializer, 9
tiddlyweb.specialbag, 11
tiddlyweb.store, 13
tiddlyweb.stores, 30
tiddlyweb.stores.text, 32
tiddlyweb.util, 17
tiddlyweb.web, 33
tiddlyweb.web.challenge, 33
tiddlyweb.web.challengers, 39
tiddlyweb.web.challengers.cookie_form,

39
tiddlyweb.web.extractor, 33
tiddlyweb.web.extractors, 39
tiddlyweb.web.extractors.http_basic, 40
tiddlyweb.web.extractors.simple_cookie,

40
tiddlyweb.web.handler, 40

tiddlyweb.web.handler.bag, 40
tiddlyweb.web.handler.chronicle, 41
tiddlyweb.web.handler.recipe, 41
tiddlyweb.web.handler.search, 42
tiddlyweb.web.handler.tiddler, 42
tiddlyweb.web.listentities, 34
tiddlyweb.web.negotiate, 34
tiddlyweb.web.query, 34
tiddlyweb.web.sendentity, 34
tiddlyweb.web.sendtiddlers, 35
tiddlyweb.web.serve, 35
tiddlyweb.web.util, 35
tiddlyweb.web.validator, 37
tiddlyweb.web.wsgi, 38
tiddlyweb.wikitext, 43
tiddlyweb.wikitext.raw, 43

47



TiddlyWeb Documentation, Release 1.4

48 Python Module Index



Index

A
add() (tiddlyweb.model.collections.Collection method),

24
add() (tiddlyweb.model.collections.Tiddlers method), 24
add_role() (tiddlyweb.model.user.User method), 27
allows() (tiddlyweb.model.policy.Policy method), 25
as_bag() (tiddlyweb.serializations.json.Serialization

method), 29
as_bag() (tiddlyweb.serializations.SerializationInterface

method), 27
as_int() (in module tiddlyweb.filters.sort), 22
as_recipe() (tiddlyweb.serializations.json.Serialization

method), 29
as_recipe() (tiddlyweb.serializations.SerializationInterface

method), 28
as_recipe() (tiddlyweb.serializations.text.Serialization

method), 30
as_tags() (tiddlyweb.serializations.SerializationInterface

method), 28
as_tiddler() (tiddlyweb.serializations.json.Serialization

method), 29
as_tiddler() (tiddlyweb.serializations.SerializationInterface

method), 28
as_tiddler() (tiddlyweb.serializations.text.Serialization

method), 30
attributes (tiddlyweb.model.policy.Policy attribute), 25

B
Bag (class in tiddlyweb.model.bag), 23
bag_as() (tiddlyweb.serializations.html.Serialization

method), 28
bag_as() (tiddlyweb.serializations.json.Serialization

method), 29
bag_as() (tiddlyweb.serializations.SerializationInterface

method), 28
bag_delete() (tiddlyweb.stores.StorageInterface method),

31
bag_delete() (tiddlyweb.stores.text.Store method), 32
bag_etag() (in module tiddlyweb.web.util), 35

bag_get() (tiddlyweb.stores.StorageInterface method), 31
bag_get() (tiddlyweb.stores.text.Store method), 32
bag_in_recipe() (in module tiddlyweb.filters.select), 22
bag_put() (tiddlyweb.stores.StorageInterface method), 31
bag_put() (tiddlyweb.stores.text.Store method), 32
bag_url() (in module tiddlyweb.web.util), 35
BagFormatError, 9
base() (in module tiddlyweb.web.challenge), 33
binary_tiddler() (in module tiddlyweb.util), 17

C
challenge_get() (in module tiddlyweb.web.challenge), 33
challenge_get() (tiddly-

web.web.challengers.ChallengerInterface
method), 39

challenge_get() (tiddly-
web.web.challengers.cookie_form.Challenger
method), 39

challenge_post() (in module tiddlyweb.web.challenge),
33

challenge_post() (tiddly-
web.web.challengers.ChallengerInterface
method), 39

challenge_post() (tiddly-
web.web.challengers.cookie_form.Challenger
method), 39

Challenger (class in tiddly-
web.web.challengers.cookie_form), 39

ChallengerInterface (class in tiddlyweb.web.challengers),
39

check_bag_constraint() (in module tiddlyweb.web.util),
35

check_incoming_etag() (in module tiddlyweb.web.util),
35

check_last_modified() (in module tiddlyweb.web.util), 36
check_password() (tiddlyweb.model.user.User method),

27
clean_path_info() (tiddlyweb.web.serve.RequestStarter

method), 35
Collection (class in tiddlyweb.model.collections), 23

49



TiddlyWeb Documentation, Release 1.4

complete() (tiddlyweb.commands.interact.TabCompleter
method), 20

Configurator (class in tiddlyweb.web.serve), 35
Container (class in tiddlyweb.model.collections), 24
content_length_and_type() (in module tiddly-

web.web.util), 36
create_policy_check() (in module tiddly-

web.model.policy), 25
creator (tiddlyweb.model.tiddler.Tiddler attribute), 26
current_timestring() (in module tiddlyweb.model.tiddler),

26

D
data_members (tiddlyweb.model.tiddler.Tiddler at-

tribute), 26
date_to_canonical() (in module tiddlyweb.filters.sort), 23
datetime_from_http_date() (in module tiddly-

web.web.util), 36
default_func() (in module tiddlyweb.filters.select), 22
del_role() (tiddlyweb.model.user.User method), 27
delete() (in module tiddlyweb.web.handler.bag), 40
delete() (in module tiddlyweb.web.handler.recipe), 41
delete() (in module tiddlyweb.web.handler.tiddler), 42
delete() (tiddlyweb.store.Store method), 14
desc (tiddlyweb.web.challengers.cookie_form.Challenger

attribute), 39
determine_bag_for_tiddler() (in module tiddly-

web.control), 5
determine_bag_from_recipe() (in module tiddly-

web.control), 5

E
encode_name() (in module tiddlyweb.web.util), 36
EncodeUTF8 (class in tiddlyweb.web.wsgi), 38
entity_etag() (in module tiddlyweb.web.util), 36
escape_attribute_value() (in module tiddlyweb.web.util),

36
extract() (tiddlyweb.web.extractors.ExtractorInterface

method), 40
extract() (tiddlyweb.web.extractors.http_basic.Extractor

method), 40
extract() (tiddlyweb.web.extractors.simple_cookie.Extractor

method), 40
extract_query() (tiddlyweb.web.query.Query method), 34
Extractor (class in tiddlyweb.web.extractors.http_basic),

40
Extractor (class in tiddly-

web.web.extractors.simple_cookie), 40
ExtractorInterface (class in tiddlyweb.web.extractors), 39

F
field (tiddlyweb.serializations.text.Serialization attribute),

30
field_in_fields() (in module tiddlyweb.filters.select), 22

fields_as() (tiddlyweb.serializations.text.Serialization
method), 30

figure_type() (in module tiddlyweb.web.negotiate), 34
filter_tiddlers() (in module tiddlyweb.control), 5
FilterError, 21
FilterIndexRefused, 21
ForbiddenError, 24
format (tiddlyweb.web.wsgi.SimpleLog attribute), 38
from_string() (tiddlyweb.serializer.Serializer method), 10

G
get() (in module tiddlyweb.web.handler.bag), 41
get() (in module tiddlyweb.web.handler.recipe), 41
get() (in module tiddlyweb.web.handler.search), 42
get() (in module tiddlyweb.web.handler.tiddler), 42
get() (tiddlyweb.store.Store method), 14
get_bag_retriever() (in module tiddlyweb.specialbag), 11
get_entity() (in module tiddlyweb.store), 15
get_recipe() (tiddlyweb.model.recipe.Recipe method), 25
get_revisions() (in module tiddly-

web.web.handler.tiddler), 42
get_route_value() (in module tiddlyweb.web.util), 36
get_search_query() (in module tiddly-

web.web.handler.search), 42
get_serialize_type() (in module tiddlyweb.web.util), 36
get_tiddlers() (in module tiddlyweb.web.handler.bag), 41
get_tiddlers() (in module tiddlyweb.web.handler.recipe),

41
get_tiddlers() (in module tiddlyweb.web.handler.search),

42
get_tiddlers_from_bag() (in module tiddlyweb.control), 5
get_tiddlers_from_recipe() (in module tiddly-

web.control), 5

H
handle() (in module tiddlyweb.manage), 7
handle_extension() (in module tiddlyweb.web.util), 36
Header (class in tiddlyweb.web.wsgi), 38
hexdigest() (tiddlyweb.model.collections.Collection

method), 24
html_encode() (in module tiddlyweb.web.util), 36
html_frame() (in module tiddlyweb.web.util), 36
http_date_from_timestamp() (in module tiddly-

web.web.util), 36

I
init() (in module tiddlyweb.commands), 19
initialize_logging() (in module tiddlyweb.util), 17
InvalidBagError, 37
InvalidRecipeError, 37
InvalidTiddlerError, 37

50 Index



TiddlyWeb Documentation, Release 1.4

L
launch_shell() (in module tiddlyweb.commands.interact),

20
limit() (in module tiddlyweb.filters.limit), 21
limit_parse() (in module tiddlyweb.filters.limit), 21
list_bag_tiddlers() (tiddlyweb.store.Store method), 14
list_bag_tiddlers() (tiddlyweb.stores.StorageInterface

method), 31
list_bag_tiddlers() (tiddlyweb.stores.text.Store method),

32
list_bags() (in module tiddlyweb.web.handler.bag), 41
list_bags() (tiddlyweb.serializations.html.Serialization

method), 28
list_bags() (tiddlyweb.serializations.json.Serialization

method), 29
list_bags() (tiddlyweb.serializations.SerializationInterface

method), 28
list_bags() (tiddlyweb.serializations.text.Serialization

method), 30
list_bags() (tiddlyweb.serializer.Serializer method), 10
list_bags() (tiddlyweb.store.Store method), 14
list_bags() (tiddlyweb.stores.StorageInterface method),

31
list_bags() (tiddlyweb.stores.text.Store method), 32
list_entities() (in module tiddlyweb.web.listentities), 34
list_recipes() (in module tiddlyweb.web.handler.recipe),

42
list_recipes() (tiddlyweb.serializations.html.Serialization

method), 28
list_recipes() (tiddlyweb.serializations.json.Serialization

method), 29
list_recipes() (tiddlyweb.serializations.SerializationInterface

method), 28
list_recipes() (tiddlyweb.serializations.text.Serialization

method), 30
list_recipes() (tiddlyweb.serializer.Serializer method), 10
list_recipes() (tiddlyweb.store.Store method), 14
list_recipes() (tiddlyweb.stores.StorageInterface method),

31
list_recipes() (tiddlyweb.stores.text.Store method), 32
list_roles() (tiddlyweb.model.user.User method), 27
list_tiddler_revisions() (tiddlyweb.store.Store method),

14
list_tiddler_revisions() (tiddly-

web.stores.StorageInterface method), 31
list_tiddler_revisions() (tiddlyweb.stores.text.Store

method), 32
list_tiddlers() (tiddlyweb.serializations.html.Serialization

method), 28
list_tiddlers() (tiddlyweb.serializations.json.Serialization

method), 29
list_tiddlers() (tiddlyweb.serializations.SerializationInterface

method), 28

list_tiddlers() (tiddlyweb.serializations.text.Serialization
method), 30

list_tiddlers() (tiddlyweb.serializer.Serializer method), 10
list_users() (tiddlyweb.store.Store method), 14
list_users() (tiddlyweb.stores.StorageInterface method),

31
list_users() (tiddlyweb.stores.text.Store method), 32
load_app() (in module tiddlyweb.web.serve), 35
load_user() (tiddlyweb.web.extractors.ExtractorInterface

method), 40
LockError, 17

M
make_command() (in module tiddlyweb.manage), 7
make_cookie() (in module tiddlyweb.web.util), 36
merge_config() (in module tiddlyweb.util), 17

N
Negotiate (class in tiddlyweb.web.negotiate), 34
NoBagError, 13
NoRecipeError, 13
NoSerializationError, 9
NoTiddlerError, 13
NoUserError, 13

P
parse_for_filters() (in module tiddlyweb.filters), 21
PermissionsError, 24
PermissionsExceptor (class in tiddlyweb.web.wsgi), 38
Policy (class in tiddlyweb.model.policy), 24
post_revisions() (in module tiddly-

web.web.handler.chronicle), 41
pseudo_binary() (in module tiddlyweb.util), 17
put() (in module tiddlyweb.web.handler.bag), 41
put() (in module tiddlyweb.web.handler.recipe), 42
put() (in module tiddlyweb.web.handler.tiddler), 42
put() (tiddlyweb.store.Store method), 14

Q
Query (class in tiddlyweb.web.query), 34

R
read_config() (in module tiddlyweb.util), 17
read_request_body() (in module tiddlyweb.web.util), 36
read_utf8_file() (in module tiddlyweb.util), 18
readable_tiddlers_by_bag() (in module tiddly-

web.control), 6
Recipe (class in tiddlyweb.model.recipe), 25
recipe_as() (tiddlyweb.serializations.html.Serialization

method), 29
recipe_as() (tiddlyweb.serializations.json.Serialization

method), 29
recipe_as() (tiddlyweb.serializations.SerializationInterface

method), 28

Index 51



TiddlyWeb Documentation, Release 1.4

recipe_as() (tiddlyweb.serializations.text.Serialization
method), 30

recipe_delete() (tiddlyweb.stores.StorageInterface
method), 31

recipe_delete() (tiddlyweb.stores.text.Store method), 32
recipe_etag() (in module tiddlyweb.web.util), 37
recipe_get() (tiddlyweb.stores.StorageInterface method),

31
recipe_get() (tiddlyweb.stores.text.Store method), 32
recipe_put() (tiddlyweb.stores.StorageInterface method),

31
recipe_put() (tiddlyweb.stores.text.Store method), 32
recipe_template() (in module tiddlyweb.control), 6
recipe_url() (in module tiddlyweb.web.util), 37
RecipeFormatError, 9
recursive_filter() (in module tiddlyweb.filters), 21
render() (in module tiddlyweb.wikitext.raw), 43
render_wikitext() (in module tiddlyweb.wikitext), 43
renderable() (in module tiddlyweb.util), 18
RequestStarter (class in tiddlyweb.web.serve), 35
root() (in module tiddlyweb.web.handler), 40

S
sanitize_desc() (in module tiddlyweb.web.validator), 37
sanitize_html_fragment() (in module tiddly-

web.web.validator), 37
search() (tiddlyweb.store.Store method), 14
search() (tiddlyweb.stores.StorageInterface method), 31
search() (tiddlyweb.stores.text.Store method), 32
select_by_attribute() (in module tiddlyweb.filters.select),

22
select_parse() (in module tiddlyweb.filters.select), 22
select_relative_attribute() (in module tiddly-

web.filters.select), 22
send_entity() (in module tiddlyweb.web.sendentity), 34
send_tiddlers() (in module tiddlyweb.web.sendtiddlers),

35
Serialization (class in tiddlyweb.serializations.html), 28
Serialization (class in tiddlyweb.serializations.json), 29
Serialization (class in tiddlyweb.serializations.text), 30
SerializationInterface (class in tiddlyweb.serializations),

27
Serializer (class in tiddlyweb.serializer), 9
server_base_url() (in module tiddlyweb.web.util), 37
server_host_url() (in module tiddlyweb.web.util), 37
set_password() (tiddlyweb.model.user.User method), 27
set_recipe() (tiddlyweb.model.recipe.Recipe method), 25
sha() (in module tiddlyweb.util), 18
SimpleLog (class in tiddlyweb.web.wsgi), 38
slots (tiddlyweb.model.tiddler.Tiddler attribute), 26
sort_by_attribute() (in module tiddlyweb.filters.sort), 23
sort_parse() (in module tiddlyweb.filters.sort), 23
SpecialBagError, 11
start_server() (in module tiddlyweb.web.serve), 35

std_error_message() (in module tiddlyweb.util), 18
StorageInterface (class in tiddlyweb.stores), 30
Store (class in tiddlyweb.store), 13
Store (class in tiddlyweb.stores.text), 32
StoreEncodingError, 14
StoreError, 14
StoreLockError, 14
StoreMethodNotImplemented, 14
StoreSet (class in tiddlyweb.web.wsgi), 38
string_to_tags_list() (in module tiddlyweb.model.tiddler),

26
superclass_name() (in module tiddlyweb.util), 18

T
TabCompleter (class in tiddlyweb.commands.interact), 20
tag_in_tags() (in module tiddlyweb.filters.select), 22
tags_as() (tiddlyweb.serializations.SerializationInterface

method), 28
tags_list_to_string() (in module tiddlyweb.model.tiddler),

26
text_in_text() (in module tiddlyweb.filters.select), 22
Tiddler (class in tiddlyweb.model.tiddler), 25
tiddler_as() (tiddlyweb.serializations.html.Serialization

method), 29
tiddler_as() (tiddlyweb.serializations.json.Serialization

method), 29
tiddler_as() (tiddlyweb.serializations.SerializationInterface

method), 28
tiddler_as() (tiddlyweb.serializations.text.Serialization

method), 30
tiddler_delete() (tiddlyweb.stores.StorageInterface

method), 31
tiddler_delete() (tiddlyweb.stores.text.Store method), 32
tiddler_etag() (in module tiddlyweb.web.util), 37
tiddler_get() (tiddlyweb.stores.StorageInterface method),

31
tiddler_get() (tiddlyweb.stores.text.Store method), 33
tiddler_members (tiddly-

web.serializations.text.Serialization attribute),
30

tiddler_put() (tiddlyweb.stores.StorageInterface method),
31

tiddler_put() (tiddlyweb.stores.text.Store method), 33
tiddler_url() (in module tiddlyweb.web.util), 37
TiddlerFormatError, 10
Tiddlers (class in tiddlyweb.model.collections), 24
tiddlyweb (module), 1
tiddlyweb.commands (module), 19
tiddlyweb.commands.interact (module), 19
tiddlyweb.config (module), 3
tiddlyweb.control (module), 5
tiddlyweb.filters (module), 20
tiddlyweb.filters.limit (module), 21
tiddlyweb.filters.select (module), 21

52 Index



TiddlyWeb Documentation, Release 1.4

tiddlyweb.filters.sort (module), 22
tiddlyweb.manage (module), 7
tiddlyweb.model (module), 23
tiddlyweb.model.bag (module), 23
tiddlyweb.model.collections (module), 23
tiddlyweb.model.policy (module), 24
tiddlyweb.model.recipe (module), 25
tiddlyweb.model.tiddler (module), 25
tiddlyweb.model.user (module), 27
tiddlyweb.serializations (module), 27
tiddlyweb.serializations.html (module), 28
tiddlyweb.serializations.json (module), 29
tiddlyweb.serializations.text (module), 30
tiddlyweb.serializer (module), 9
tiddlyweb.specialbag (module), 11
tiddlyweb.store (module), 13
tiddlyweb.stores (module), 30
tiddlyweb.stores.text (module), 32
tiddlyweb.util (module), 17
tiddlyweb.web (module), 33
tiddlyweb.web.challenge (module), 33
tiddlyweb.web.challengers (module), 39
tiddlyweb.web.challengers.cookie_form (module), 39
tiddlyweb.web.extractor (module), 33
tiddlyweb.web.extractors (module), 39
tiddlyweb.web.extractors.http_basic (module), 40
tiddlyweb.web.extractors.simple_cookie (module), 40
tiddlyweb.web.handler (module), 40
tiddlyweb.web.handler.bag (module), 40
tiddlyweb.web.handler.chronicle (module), 41
tiddlyweb.web.handler.recipe (module), 41
tiddlyweb.web.handler.search (module), 42
tiddlyweb.web.handler.tiddler (module), 42
tiddlyweb.web.listentities (module), 34
tiddlyweb.web.negotiate (module), 34
tiddlyweb.web.query (module), 34
tiddlyweb.web.sendentity (module), 34
tiddlyweb.web.sendtiddlers (module), 35
tiddlyweb.web.serve (module), 35
tiddlyweb.web.util (module), 35
tiddlyweb.web.validator (module), 37
tiddlyweb.web.wsgi (module), 38
tiddlyweb.wikitext (module), 43
tiddlyweb.wikitext.raw (module), 43
TiddlyWebREPL (class in tiddlyweb.commands.interact),

20
timestring_to_datetime() (in module tiddly-

web.model.tiddler), 26
to_string() (tiddlyweb.serializer.Serializer method), 10
TransformProtect (class in tiddlyweb.web.wsgi), 38

U
usage() (in module tiddlyweb.manage), 7
User (class in tiddlyweb.model.user), 27

user_delete() (tiddlyweb.stores.StorageInterface method),
32

user_delete() (tiddlyweb.stores.text.Store method), 33
user_get() (tiddlyweb.stores.StorageInterface method), 32
user_get() (tiddlyweb.stores.text.Store method), 33
user_perms() (tiddlyweb.model.policy.Policy method), 25
user_put() (tiddlyweb.stores.StorageInterface method),

32
user_put() (tiddlyweb.stores.text.Store method), 33
UserExtract (class in tiddlyweb.web.extractor), 33
UserRequiredError, 25

V
validate_bag() (in module tiddlyweb.web.validator), 37
validate_recipe() (in module tiddlyweb.web.validator), 37
validate_tiddler() (in module tiddlyweb.web.validator),

38
validate_tiddler_headers() (in module tiddly-

web.web.handler.tiddler), 42

W
write_lock() (in module tiddlyweb.util), 18
write_log() (tiddlyweb.web.wsgi.SimpleLog method), 38
write_unlock() (in module tiddlyweb.util), 18
write_utf8_file() (in module tiddlyweb.util), 18

Index 53


	tiddlyweb Package
	config Module
	control Module
	manage Module
	serializer Module
	specialbag Module
	store Module
	util Module
	Subpackages
	TiddlyWeb
	Python Module Index

