

TiddlyWeb

TiddlyWeb is an open source HTTP API [http://docs.tiddlyweb.com/HTTP%20API] for storing and accessing
flexible and composable microcontent. It is also a toolkit for
tiddlers [http://docs.tiddlyweb.com/tiddler] on the web and a robust server side for TiddlyWiki [http://tiddlywiki.com/].

TiddlyWeb by itself provides the base HTTP API, storage engine and
default serializations. A large variety of plugins [https://pypi.python.org/pypi?%3Aaction=search&term=tiddlywebplugins] provide
additional functionality.

Quick Start

The quickest way to get going with an operational installation of
TiddlyWeb is to install tiddlywebwiki [https://pypi.python.org/pypi/tiddlywebwiki].

See the quick start [http://docs.tiddlyweb.com/Quick%20Start] documentation for that.

Additional Documentation

Besides package documentation starting at tiddlyweb Package, additional
documentation can be found at http://tiddlyweb.com and
http://docs.tiddlyweb.com/.

Note that all of this documentation is in a constant state of flux, as
it should be. If you find an error please help to fix it.

Source

The TiddlyWeb source is kept at GitHub [https://github.com/tiddlyweb/tiddlyweb].

	Index

	Module Index

	Search Page

tiddlyweb Package

tiddlyweb Package

For more complete information also see:

	http://tiddlyweb.com/

	http://docs.tiddlyweb.com/

	http://tiddlyweb.readthedocs.org/

TiddlyWeb is a web service and library for managing and manipulating
resources useful in the creation of dynamic wiki-like collections of
content and functionality. The model of the data was originally designed
for creating custom TiddlyWiki implementations, where the content of
the TiddlyWiki can be saved to the server, and shared among multiple users.

TiddlyWeb presents an HTTP API for resource management. The API follows,
as possible, RESTful principles to keep the API flexible and scalable.
The URLs for this interface are kept in a file called urls.map found in
the tiddlyweb package. urls.map dispatches web requests at specific URLs
to specific functions in modules in the tiddlyweb.web.handler package.
urls.map may be located in another place by changing the urls_map key
in tiddlywebconfig.py [http://docs.tiddlyweb.com/tiddlywebconfig.py]. There are also mechanisms for overriding storage
(see tiddlyweb.store), serialization (see tiddlyweb.serializer)
and authentication (see tiddlyweb.web.challenger and
tiddlyweb.web.extractor) systems. There are also system_plugins and
twanager_plugins for further extensibility.

The primary resources presented by the server are Recipes [http://docs.tiddlyweb.com/recipe], Bags [http://docs.tiddlyweb.com/bag] and
Tiddlers [http://docs.tiddlyweb.com/tiddler]. See the tiddlyweb.model package.

TiddlyWeb includes twanager [http://docs.tiddlyweb.com/twanager], a command line tool for doing a variety
of TiddlyWeb activities. Run twanager without arguments for a list
of commands.

See the documentation for other modules and packages within tiddlyweb
for additional details.

config Module

The configuration of a particular instance of TiddlyWeb, carried around
as a dict in the WSGI environ as tiddlyweb.config.

If there is a tiddlywebconfig.py file in the working directory
where twanager or the web server is started, its values will
override the defaults established in this module.

The server administrator may add additional keys to the config via
extensions.

Config Keys

	system_plugins

	A list of Python module names that act as plugins for the running
server. At server startup time they are found, compiled, and the
function init(config) is called on them, where config is
a reference to the current config. Use this to add functionality to the
server that cannot be accomplished from the defaults, such as adding
additional web handlers, storage hooks or overriding existing
behaviors.

	twanager_plugins

	A list of Python module names that act as plugins for twanager,
adding command line functionality. As with system_plugins
init(config) is called.

	server_store

	A list containing a module name and a configuration dictionary. The
named module is an implementation of
tiddlyweb.stores.StorageInterface (first looked up in the
tiddlyweb.stores package space, then in sys.path).
The configuration is an arbitrary dictionary of information to be
passed to the store (e.g. database username and password).

	server_request_filters

	A list of WSGI applications which, in order, process the incoming
requests made to the server. This can extract, add, or filter
information as necessary. The defaults provide query string
processing, content negotiation and establish environ settings.

	server_response_filters

	A list of WSGI applications which, in order, process the outgoing
response from the server. This can transform, log, or handle
exceptions as necessary.

	server_host

	The hostname of this server, usually set from whatever starts the
server. This is a dictionary with keys: scheme, host, port.

	server_prefix

	A URL path portion which is a prefix to every URL the system uses
and produces. Use this to host TiddlyWeb in a subdirectory (e.g.
/wiki). Default is ''.

	extension_types

	A dictionary that pairs extension strings used in URLs as human
controlled content-negotiation with the MIME types they represent.
Add to this if you add to serializers.

	serializers

	Incoming request Accept headers, or extension MIME types
paired with a tiddlyweb.serializations.Serializer
implementation and an outgoing MIME type for that type of
serialization.

	extractors

	An extractor is a credential extractor (see
tiddlyweb.web.extractors.ExtractorInterface) that looks
in an incoming request to attempt to extract information from it
that indicates a potential user in the system. This config item is
an ordered list of extractors, tried in succession until one returns
tiddlyweb.usersign information or there are no more left.

	auth_systems

	A list of challengers available to the system when it needs to ask
for a user. (See
tiddlyweb.web.challengers.ChallengerInterface) If there
is more than one challenger the user is presented with a list of
those available. If there is only one, the user is automatically
directed to just that one. A challenger needs to work with the
extractors system so that the challenger provides something for
future requests that the extractor can extract.

	secret

	A string used to encrypt the cookie installed by some of the
challengers and used by the cookie extractor. NOTE: EVERY
INSTALLATION SHOULD CHANGE THIS IN ITS OWN CONFIGURATION.

	urls_map

	The file location of the text file that maps URL paths to Python
code, doing method dispatch. Usually it is better to use plugins to
change the available URLs and handlers.

	bag_create_policy

	A policy statement on who or what kind of user can create new bags
on the system through the web API. ANY means any
authenticated user can. ADMIN means any user with role ADMIN
can. '' means anyone can.

	recipe_create_policy

	A policy statement on who or what kind of user can create new
recipes on the system through the web API. See
bag_create_policy.

	log_file

	Path and filename of the TiddlyWeb log file.

	log_level

	String of loglevel to log. Pick one of CRITICAL, DEBUG,
ERROR, INFO, WARNING.

	css_uri

	A URI of a css file that can be used to style the HTML output
of the server. See tiddlyweb.serializations.html for the
classes and ids used.

	wikitext.default_renderer

	The default module for rendering tiddler.text to HTML when
tiddler.type is None.

	wikitext.type_render_map

	A dictionary mapping tiddler.type MIME types to modules with
a render() function for turning that type into HTML.

	wsgi_server

	The name of a module that provides a start_server method which
starts a server to run this TiddlyWeb instance. Used by the
twanager server command only.

	special_bag_detectors

	A list of functions that take an environ and bag name and return
a tuple of two functions: the first returns the tiddlers in that
bag, the second returns one tiddler from that bag.

	collections.use_memory

	If True Tiddler Collections are kept in memory during a
single request. Defaults to False to save memory.

control Module

control provides routines which integrate the basic model classes with the rest of the system. The model classes are
intentionally simple. The methods here act as controllers on those classes.

These are primarily related to handling recipes.

	
tiddlyweb.control.determine_bag_for_tiddler(recipe, tiddler, environ=None)

	Return the bag which this
tiddler would be in
if we were to save it to the named recipe rather than to a bag.

This is done reversing the recipe list and seeing if the
tiddler passes the constraint of the bag and its associated
filter. If bag+filter is true,
return that bag.

	
tiddlyweb.control.determine_bag_from_recipe(recipe, tiddler, environ=None)

	Given a recipe and a tiddler determine the bag in which this tiddler can be found. This is different from
determine_bag_for_tiddler(). That one finds the bag the tiddler
could be in. This is the bag the tiddler is in.

This is done by reversing the recipe’s list, and filtering each bag
according to any filters present. The
resulting tiddlers are checked.

If an indexer is configured use the index to determine if a tiddler
exists in a bag.

	
tiddlyweb.control.filter_tiddlers(tiddlers, filters, environ=None)

	Return a generator of tiddlers resulting from filtering the provided
iterator of tiddlers by the provided filters.

If filters is a string, it will be parsed for filters.

	
tiddlyweb.control.get_tiddlers_from_bag(bag)

	Yield the individual tiddlers
that are in a bag.

The tiddlers return are empty objects that have not been loaded from
the store.

Rarely used, see tiddlyweb.store.Store.list_bag_tiddlers().

	
tiddlyweb.control.get_tiddlers_from_recipe(recipe, environ=None)

	Return the list of tiddlers that result from processing the recipe.

This list of tiddlers is unique by title with tiddlers later in the
recipe taking precedence over those earlier in the recipe.

The tiddlers returned are empty objects (i.e. not loaded from the
store).

	
tiddlyweb.control.readable_tiddlers_by_bag(store, tiddlers, usersign)

	Yield those tiddlers which are readable by the current usersign.
This means, depending on the read constraint on the
tiddler's
bag's policy, yield or not.

	
tiddlyweb.control.recipe_template(environ)

	Provide a means to specify custom {{ key }} values in
recipes which are then
replaced with the value specified in
environ['tiddlyweb.recipe_template'].

This allows recipes to be dynamic in the face of conditions in the
current request.

manage Module

manage provides the workings for the twanager command line tool.
twanager calls handle(), making available all commands
that have been put into the COMMANDS dictionary by the
make_command() decorator. See tiddlyweb.commands
for examples.

Plugins which add commands must be added to the twanager_plugins
config setting so they are imported at
the proper time.

	
tiddlyweb.manage.handle(args)

	Dispatch to the proper function for the command given in args[1].

	
tiddlyweb.manage.make_command()

	A decorator that marks the decorated method as a member of the
commands dictionary, with associated help.

The pydoc of the method is used in automatically generated :py:func:usage
information.

	
tiddlyweb.manage.usage(args)

	List this help

serializer Module

Serialize TiddlyWeb entities for the sake of taking input and sending
output.

This module provides the facade for accessing the possibly many modules
which act as serializations. It is asked by calling code to provide a
serialization for a given MIME type. Plugins may override what MIME
types are handled and by what modules. See tiddlyweb.config
for related configuration settings.

	
exception tiddlyweb.serializer.BagFormatError

	Bases: exceptions.Exception

The provided input is insufficient to form a valid Bag.

	
exception tiddlyweb.serializer.NoSerializationError

	Bases: exceptions.Exception

There is a NoSerialization of this type for the entity.

	
exception tiddlyweb.serializer.RecipeFormatError

	Bases: exceptions.Exception

The provided input is insufficient to form a valid Recipe.

	
class tiddlyweb.serializer.Serializer(engine, environ=None)

	Bases: object

A Serializer is a facade to a Serialization which implements the
tiddlyweb.serializations.SerializationInterface to turn a
TiddlyWeb entity into a particular
representation or vice versa.

A Serializer can also list collections of entities in a particular
representation.

A single Serializer is a reusable tool which can serialize more than
one object. You must set serializer.object after initialization and
then again for each subsequent object being serialized.

The following example turns the tiddler into JSON and vice-versa:

tiddler = Tiddler('cow', 'bag')
tiddler.text = 'moo'
serializer = Serializer('json', environ)
serializer.object = tiddler
json_string = serializer.to_string()
assert '"text": "moo"' in json_string
new_string = json_string.replace('moo', 'meow')
serializer.from_string(new_string)
assert tiddler.text == 'meow'

Note that to_string() and from_string() operate on the
Serializer which dispatches to a method in the SerializationInterface
implementation based on the class of the object being serialized.

	
from_string(input_string)

	Turn the provided input_string into a TiddlyWeb entity object
of the type of self.object. That is: populate self.object
based on input_string.

	
list_bags(bags)

	Provide a (usually unicode) string representation of the provided
bags in the current
serialization.

	
list_recipes(recipes)

	Provide a (usually unicode) string representation of the provided
recipes in the current
serialization.

	
list_tiddlers(tiddlers)

	Provide a (usually unicode) string representation of the
tiddlers in the
provided Tiddlers collection.

	
to_string()

	Provide a (usually unicode) string representation of the
bag, recipe or tiddler at self.object.

	
exception tiddlyweb.serializer.TiddlerFormatError

	Bases: exceptions.Exception

The provided input is insufficient to form a valid Tiddler.

specialbag Module

Special bags are a feature implemented in plugins that allow
non-standard collections of data to be represented as a
bag of tiddlers. An example is remotebag [https://pypi.python.org/pypi/tiddlywebplugins.remotebag].

If config['special_bag_detectors'] is set, it is a list of functions
that take two arguments: a WSGI environ and a string and return either:

	two functions

	None

The first function yields tiddlers, like
tiddlyweb.store.list_bag_tiddlers(). It’s arguments are a
WSGI environ and a string.

The second function returns a single tiddler. It’s arguments are a WSGI
environ and a tiddler object (with at least title and bag set).

	
exception tiddlyweb.specialbag.SpecialBagError

	Bases: exceptions.Exception

A generic exception to be raised by special bag implementations.

	
tiddlyweb.specialbag.get_bag_retriever(environ, bag)

	When loading bag or
tiddlers within it
from the store, this method is
used to inspect config['special_bag_detectors'] to determine
if there is a special handler. If there is, the handler is returned
and used for retrieval, otherwise None is returned and the store
is used as normal.

store Module

Store TiddlyWeb entities to a configured persistence layer.

This module provides the facade for accessing one of many possible
modules which provide storage for entities. It provides a general
interface to get, put, delete or list entities.

Each of the single entity methods can be augmented with hooks
provided by plugins. This allows actions to be performed based on
data in the store being retrieved or updated, such as updating an
index.

	
exception tiddlyweb.store.NoBagError

	Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.bag.Bag was found.

	
exception tiddlyweb.store.NoRecipeError

	Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.recipe.Recipe was found.

	
exception tiddlyweb.store.NoTiddlerError

	Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.tiddler.Tiddler was found.

	
exception tiddlyweb.store.NoUserError

	Bases: tiddlyweb.store.StoreError

No tiddlyweb.model.user.User was found.

	
class tiddlyweb.store.Store(engine, config=None, environ=None)

	Bases: object

A Store is a facade to an implementation of
tiddlyweb.stores.StorageInterface to handle the storage
and retrieval of all entities in the
TiddlyWeb system.

Because of the facade system it is relatively straightforward to
create diverse storage systems for all sorts of or multiple media. In
addition stores can be layered to provide robust caching and
reliability.

The Store distinguishes between single entities and collections.
With single entities, an entity is passed to the store and the
store is asked to get(), put() or delete()
it. When get() is used the provided object is updated in
place in operation that could be described as population. Dispatch
is based on the class of the provided entity.

After any of those operations optional HOOKS are called.

With collections there are specific list methods:

	list_bags()

	list_recipes()

	list_bag_tiddlers()

	list_tiddler_revisions()

	list_users()

Finally a store may optionally provide a search(). How
search works and what it even means is up to the implementation.

	
delete(thing)

	Delete a thing: recipe, bag, tiddler or user.

	
get(thing)

	Get a thing: recipe, bag, tiddler or user.

	
list_bag_tiddlers(bag)

	List all the tiddlers in the bag.

	
list_bags()

	List all the available bags in the system.

	
list_recipes()

	List all the available recipes in the system.

	
list_tiddler_revisions(tiddler)

	List the revision ids of the revisions of the indicated tiddler
in reverse chronological older (newest first).

	
list_users()

	List all the available users in the system.

	
put(thing)

	Put a thing, recipe, bag, tiddler or user.

	
search(search_query)

	Search in the store, using a search algorithm
specific to the tiddlyweb.stores.StorageInterface
implementation.

	
exception tiddlyweb.store.StoreEncodingError

	Bases: tiddlyweb.store.StoreError

Something about an entity made it impossible to be encoded to the
form required by the store.

	
exception tiddlyweb.store.StoreError

	Bases: exceptions.IOError

Base Exception for Store Exceptions.

	
exception tiddlyweb.store.StoreLockError

	Bases: tiddlyweb.store.StoreError

This process was unable to get a lock on the store.

	
exception tiddlyweb.store.StoreMethodNotImplemented

	Bases: tiddlyweb.store.StoreError

A tiddlyweb.stores.StorageInterface does not implement
this method.

	
tiddlyweb.store.get_entity(entity, store)

	Load the provided entity from the store if it has not already
been loaded. If it can’t be found, still return the same entity,
just keep it empty.

This works for tiddlers, bags and recipes. Not users!

util Module

This module provides a centralized collection of miscellaneous utility
functions used throughout TiddlyWeb and plugins.

Web specific utilities are in tiddlyweb.web.util.

	
exception tiddlyweb.util.LockError

	Bases: exceptions.IOError

This process was unable to get a lock.

	
tiddlyweb.util.binary_tiddler(tiddler)

	Test if a tiddler
represents binary content (e.g. an image).

Return True if this Tiddler has a type which suggests the
content of the tiddler is non-textual.

	
tiddlyweb.util.initialize_logging(config, server=False)

	Initialize the system’s logging.

If this code is reached from twanager when there is no sub_command
logging is not started. This avoids spurious tiddlyweb.log files
popping up all over the place.

	
tiddlyweb.util.merge_config(global_config, additional_config, reconfig=True)

	Update the global_config with the additional data provided in
the dict additional_config. If reconfig is True, then
reread and merge tiddlywebconfig.py so its overrides continue
to operate.

Note that if the value of a existing key is a dict, then it is
updated (merged) with the value from additional_config.
Otherwise the value is replaced.

Warning: Please ensure (via tests) when using this that it will
give the desired results.

	
tiddlyweb.util.pseudo_binary(content_type)

	Test if a tiddler
represents textual content that should be treated as a pseudo-binary.

A pseudo binary is defined as textual content for which (this) TiddlyWeb
(instance) has no serialization or is not treated
as wikitext. It is identified by a
MIME type that looks like text, json, xml or
javascript.

TiddlyWeb requires that such content be uploaded encoded as UTF-8.

	
tiddlyweb.util.read_config(global_config)

	Read in a local configuration override, named tiddlywebconfig.py,
from the current working directory. If the file exists but can’t be
imported as valid Python an exception will be thrown, preventing
unexpected results.

What is expected in the override file is a dict with the name config.

global_config is a reference to the currently operational
main TiddlyWeb config. The read
configuration data is merged into it.

	
tiddlyweb.util.read_utf8_file(filename)

	Read the UTF-8 encoded file at filename and return unicode.

Allow any exceptions to raise.

	
tiddlyweb.util.renderable(tiddler, environ=None)

	Return True if the provided tiddler's type is one that can be
rendered to HTML by the wikitext
rendering subsystem.

	
tiddlyweb.util.sha(data='')

	Create a sha1 digest of the data.

	
tiddlyweb.util.std_error_message(message)

	Display message on the stderr console.

	
tiddlyweb.util.superclass_name(instance)

	Given an instance return the lowerclass name of the penultimate
class in the hierarchy (the last is object). This is used to do
dynamic method lookups in adaptor classes via serializer.py and
store.py while still allowing model entities to be subclassed.
Those subclasses must insure that their __mro__ results in
Bag, User, Recipe or Tiddler in the penultimate slot.

	
tiddlyweb.util.write_lock(filename)

	Create an advisory lock file based on filename.

This is primarily used by the text store.

	
tiddlyweb.util.write_unlock(filename)

	Unlock the write lock associated with filename.

	
tiddlyweb.util.write_utf8_file(filename, content)

	Write the unicode string in content to a UTF-8 encoded
file named filename.

Allow any exceptions to raise.

Subpackages

	commands Package
	commands Package

	interact Module

	filters Package
	filters Package

	limit Module

	select Module

	sort Module

	model Package
	model Package

	bag Module

	collections Module

	policy Module

	recipe Module

	tiddler Module

	user Module

	serializations Package
	serializations Package

	html Module

	json Module

	text Module

	stores Package
	stores Package

	text Module

	web Package
	web Package

	challenge Module

	extractor Module

	listentities Module

	negotiate Module

	query Module

	sendentity Module

	sendtiddlers Module

	serve Module

	util Module

	validator Module

	wsgi Module

	Subpackages
	challengers Package
	challengers Package

	cookie_form Module

	extractors Package
	extractors Package

	http_basic Module

	simple_cookie Module

	handler Package
	handler Package

	bag Module

	chronicle Module

	recipe Module

	search Module

	tiddler Module

	wikitext Package
	wikitext Package

	raw Module

commands Package

commands Package

Command line tools for TiddlyWeb are accessed via the twanager
script. Each command is named by the first argument passed to the
script.

The commands defined in this package are added to a list of available
commands using the twanager plugin mechanism. That list is extensible
via twanager_plugins in tiddlyweb.config and
tiddlyweb.manage.make_command().

Typical commands do things like starting a server, creating a user and
listing existing entities.

	
tiddlyweb.commands.init(config)

	Establish the commands during twanager startup.

interact Module

This module provides a twanager command interact which
provides a Python shell preloaded with the necessary local
variables to interact with the current instance’s store and the entities within. The locals are:

	Recipe

	Bag

	Tiddler

	User

	Policy

	Serializer

	control

	util

	web

	An environ containing tiddlyweb.config and
tiddlyweb.store` keys and values.

	A config containing the current tiddlyweb.config.

These are enough to do most operations.

	
class tiddlyweb.commands.interact.TabCompleter(namespace=None)

	Bases: rlcompleter.Completer

Tab completion for the interactive shell that allows pressing
the tab character to indicate an indent.

	
complete(text, state)

	Complete the provided text. If there is no text, indent.

	
class tiddlyweb.commands.interact.TiddlyWebREPL(locals=None, filename='<console>')

	Bases: code.InteractiveConsole

An interactive console for the current TiddlyWeb instance.

This augments it’s super class by adding tab completion and
establishing a set of useful local variables.

	
tiddlyweb.commands.interact.launch_shell(config, store, args)

	Establish the basic environment for the shell and then start it.

filters Package

filters Package

Overarching handler for TiddlyWeb filters [http://docs.tiddlyweb.com/filter].

Filters provide an extensible syntax for limiting any Collection by attributes on the entities in
the collection. Though primarily for Tiddlers, Bags and Recipes can be filtered as well.

The basic filters provide for selecting and sorting on attributes of the
entities and for limiting (the number of) entities. These basic types of
filter can be extended with plugins, and the ways attributes are processed
can also be extended.

Filters are parsed from a string that is formatted as a CGI query string
with parameters and arguments. The parameter is a filter type. Each
filter is processed in sequence: the first processing all the entities
handed to it, the next taking only those that result from the first.

Filters can be extended by adding more parsers to FILTER_PARSERS.
Parsers for existing filter types may be extended as well (see the
documentation for each type).

The call signature for a filter is:

filter(entities, indexable=indexable, environ=environ)

The attribute and value for which a filter filters is established in
the parsing stage and are set as upvalues of the filter closure that
gets created.

indexable and environ are optional parameters that in special cases
allow a select style filter to be
optimized with the use of an index. In the current implementation this is
only done when:

	the select filter is the first filter in a stack of filters passed to
recursive_filter()

	the entities to be filtered are tiddlers in the context of a bag (this helps to constrain the index)

When both of the above are true the system looks for a module named by
tiddlyweb.config['indexer'], imports it, looks for a function called
indexy_query, and passes environ and information about the bag
and the attribute being selected.

What index_query does to satisfy the query is up to the module. It
should return a list of tiddlers that have been loaded from the
tiddlyweb.store.Store.

If for some reason index_query does not wish to perform the query (e.g.
the index cannot satisfy the query) it may raise FilterIndexRefused and
the normal filtering process will be performed.

Note that testing should be done to determine if using an index is
of any benefit. In some stores (for example caching stores) traversing
the tiddlers is faster than using an index.

	
exception tiddlyweb.filters.FilterError

	Bases: exceptions.Exception

An exception to throw when an attempt is made to filter on an
unavailable attribute.

	
exception tiddlyweb.filters.FilterIndexRefused

	Bases: tiddlyweb.filters.FilterError

A filter index has refused to satisfy a filter with its index.

	
tiddlyweb.filters.parse_for_filters(query_string, environ=None)

	Take a string that looks like a CGI query string and parse it
for filters. Return a tuple of a list of filter functions and
a string of whatever was in the query string that did not result
in a filter.

	
tiddlyweb.filters.recursive_filter(filters, entities, indexable=False)

	Recursively process the list of filters found by
parse_for_filters() against the given list of entities.

Each next filter processes only those entities that were results of
the previous filter.

Misnamed, early versions were more truly recursive.

limit Module

A filter type to limit a group of entities
using a syntax similar to SQL Limit:

limit=<index>,<count>
limit=<count>

	
tiddlyweb.filters.limit.limit(entities, count=0, index=0)

	Make a slice of a list of entities based on a count and index.

	
tiddlyweb.filters.limit.limit_parse(count='0')

	Parse the argument of a limit filter
for a count and index argument, return a function which does the limiting.

Exceptions while parsing are passed up the stack.

select Module

A filter type for selecting only some
entities, usually tiddlers,
from a collection of entities, usually by an attribute of the tiddlers.

The syntax is:

select=attribute:value # attribute is value
select=attribute:!value # attribute is not value
select=attribute:>value # attribute is greater than value
select=attribute:<value # attribute is less than value

ATTRIBUTE_SELECTOR is checked for a function which returns True
or False for whether the provided value matches for the entity being
tested. The default case is lower case string equality. Other functions
may be provided by plugins. Attributes may be virtual, i.e. not real
attributes on entity. For example we can check for the presence of a
tag in a tiddlers tags attribute with:

select=tag:tagvalue

An attribute function takes an entity, an attribute name and a value.
It may then do anything it wants with it, and must return True or
False.

	! negates a selection, getting all those entities that don’t match.

	> gets those entities that sort greater than the value.

	< gets those entities that sort less than the value.

When doing sorting ATTRIBUTE_SORT_KEY is consulted to canonicalize the
value. See tiddlyweb.filters.sort.

	
tiddlyweb.filters.select.bag_in_recipe(entity, attribute, value)

	Return True if the named bag
is in the recipe.

	
tiddlyweb.filters.select.default_func(entity, attribute, value)

	Look in the entity for an attribute with the provided value.
First real object attributes are checked, then, if available,
extended fields. If neither of these are present, return False.

	
tiddlyweb.filters.select.field_in_fields(entity, attribute, value)

	Return True if the entity has the named field.

	
tiddlyweb.filters.select.select_by_attribute(attribute, value, entities, negate=False, indexable=None, environ=None)

	Select entities where value of attribute matches the provide value.

If negate is True, get those that don’t match.

	
tiddlyweb.filters.select.select_parse(command)

	Parse a select filter string into
attributes and arguments and return a function (for later use)
which will do the selecting.

	
tiddlyweb.filters.select.select_relative_attribute(attribute, value, entities, greater=False, lesser=False, environ=None)

	Select entities that sort greater or less than the provided value
for the provided attribute.

	
tiddlyweb.filters.select.tag_in_tags(entity, attribute, value)

	Return True if the provided entity has a tag of value in its
tag list.

	
tiddlyweb.filters.select.text_in_text(entity, attribute, value)

	Return True if the provided entity has the string provided in
value within its text attribute.

sort Module

A filter type to sort a collection of
entities by some attribute. The syntax is:

sort=attribute # sort ascending
sort=-attribute # sort descending

Atribute is either a real entity attribute or a key in
ATTRIBUTE_SORT_KEY that has as its value a function used to generate a
key to pass to the sort. ATTRIBUTE_SORT_KEY can be extended by plugins.

	
tiddlyweb.filters.sort.as_int(attribute)

	Treat attribute as int if it looks like one.

	
tiddlyweb.filters.sort.date_to_canonical(datestring)

	Take a (TiddlyWiki-style) string of 14 or less digits and turn it
into 14 digits for the sake of comparing entity dates.

	
tiddlyweb.filters.sort.sort_by_attribute(attribute, entities, reverse=False, environ=None)

	Sort a group of entities by some attribute.
Inspect ATTRIBUTE_SORT_KEY to see if there is a special
function by which we should generate the value for this
attribute.

	
tiddlyweb.filters.sort.sort_parse(attribute)

	Create a function which will sort a collection of entities.

model Package

model Package

Models for TiddlyWeb Entities.

Classes representing the important entities in the TiddlyWeb system.

These are intentionally limited, making no effort to handle their own
persistence or presentation. That is the job of the store and serializer.

bag Module

A module containing the Bag class.

	
class tiddlyweb.model.bag.Bag(name, desc=u'')

	Bases: object

A Bag is a virtual container for tiddlers. The bag provides a domain
for the tiddlers within identifying those tiddlers uniquely and
optionally acting a topical, functional or authorization container
for the tiddlers.

A bag can contain many tiddlers but every tiddler must have a different
title. The canonical identifier of a tiddler is the combination of the
containing bag’s name and the tiddler’s title.

Containership is achieved via association: There are no methods on a
bag to access the contained tiddlers. These are found via
store.list_bag_tiddlers.

A Bag has a Policy
which may be used to control access to both the Bag and the tiddlers
within. These controls are optional and are primarily designed for
use within the web handlers.

collections Module

Classes representing collections of bags, recipes and tiddlers.

Because the main reason for having a collection is to send it out over
the web, the collections keep track of their last-modified time and
generate a hash suitable for use as an ETag.

	
class tiddlyweb.model.collections.Collection(title='')

	Bases: object

Base class for all collections.

Can be used directly for general collections if required.

A collection acts as generator, yielding one of its contents when
iterated.

	
add(thing)

	Add an item to the container, updating the digest and
modified information.

	
hexdigest()

	Return the current hex representation of the hash digest of this
collection.

	
class tiddlyweb.model.collections.Container(title='')

	Bases: tiddlyweb.model.collections.Collection

A collection of things which have a name attribute.

In TiddlyWeb this is for lists of bags and recipes.

	
class tiddlyweb.model.collections.Tiddlers(title='', store=None, bag=None, recipe=None)

	Bases: tiddlyweb.model.collections.Collection

A Collection specifically for tiddlers.

This differs from the base class in two ways:

The calculation of the digest is more detailed in order to create
stong ETags for the collection.

When iterated, if store is set on the Collection, then a yielded
tiddler will be loaded from the store to fill in all its attributes.
When a tiddler is added to the collection, if it is already filled,
a non-full copy is made and put into the collection. This is done
to save memory and because often the data is not needed.

If collections.use_memory is True in config then the
full tiddler is kept in the collection. On servers with adequate
memory this can be more efficient.

	
add(tiddler)

	Add a reference to the tiddler to the container, updating the
digest and modified information. If the tiddler has recently been
deleted, resulting in a StoreError, don’t add it.

policy Module

A module containing the Policy class and associated
exceptions.

	
exception tiddlyweb.model.policy.ForbiddenError

	Bases: tiddlyweb.model.policy.PermissionsError

The provided user cannot do this action.

	
exception tiddlyweb.model.policy.PermissionsError

	Bases: exceptions.Exception

Base class for Policy violations.

	
class tiddlyweb.model.policy.Policy(owner=None, read=None, write=None, create=None, delete=None, manage=None, accept=None)

	Bases: object

A container for information about the contraints on a bag or recipe. Both are containers of
tiddlers. We need to
be able to control who can do what to do those tiddlers. We also
need to be able to control who can manage those constraints.

The :pu:func:__init__ parameters represent a default policy.

There are six constraints plus one identifying attribute (owner).
The constraints are listed below with descriptions of what is allowed
if the constraint passes.

	read

	View this entity in lists. View the contained entities.

	write

	Edit the contained entities that already exist.

	create

	Create new entities in the container.

	delete

	Remove a contained entity.

	manage

	Change the policy itself.

	accept

	Accept the entity into the container without requiring
validation.

	
allows(usersign, constraint)

	Is the user encapsulated by the usersign dict allowed to
perform the action described by constraint. If so, return
True. If not raise a UserRequiredError (if the user is
GUEST) or ForbiddenError exception.

The dict has a name key with a string value which is a
username and a roles key with a list of roles as its value.
Either may match in the constraint. Usersign is usually populated
during the CredentialsExtractor phase of a
request.

	
attributes = [u'read', u'write', u'create', u'delete', u'manage', u'accept', u'owner']

	

	
user_perms(usersign)

	For this policy return a list of constraints for which
this usersign passes.

	
exception tiddlyweb.model.policy.UserRequiredError

	Bases: tiddlyweb.model.policy.PermissionsError

To do this action a user is required.

	
tiddlyweb.model.policy.create_policy_check(environ, entity, usersign)

	Determine if the user in usersign can create entity type.

recipe Module

The Recipe class.

	
class tiddlyweb.model.recipe.Recipe(name, desc=u'')

	Bases: object

A Recipe is an ordered list that represents a program for creating a
collection of tiddlers.

Each line in the recipe is the combination of a bag name and a filter
string. This implementation uses list of tuples.

In common usage a recipe contains only strings representing bags
and filters, but for the sake of easy testing, the bag argument
can be a Bag object.

A Recipe has a Policy
which can be used to control access to the Recipe. These controls are
optional and are primarily designed for use within the web
handlers.

	
get_recipe(template=None)

	Return the recipe list, as a list of tuple pairs.

	
set_recipe(recipe_list)

	Set the contents of the recipe list.

tiddler Module

A module containing the Tiddler class and related functions.

	
class tiddlyweb.model.tiddler.Tiddler(title=None, bag=None)

	Bases: object

The primary content object in the TiddlyWiki and TiddlyWeb universe,
representing a distinct piece of content, often vaguely
corresponding to a Page in wiki systems. A Tiddler has text and some
associated metadata. The text can be anything, often wikitext in
some form, or Javascript code. It is possible for a Tiddler to
container binary content, such as image data.

A Tiddler is intentionally solely a container of data. That is, it has
no methods which change the state of attributes in the Tiddler or
manipulate the tiddler. Changing the attributes is done by directly
changing the attributes. This is done to make the Tiddler easier to
store and serialize in many ways.

A Tiddler has several attributes:

	title

	The name of the tiddler. Required.

	created

	A string representing when this tiddler was created.

	modified

	A string representing when this tiddler was last changed.
Defaults to now.

	modifier

	A string representing a personage that changed this tiddler in
some way. This doesn’t necessarily have any assocation with the
tiddlyweb.usersign, though it may.

	tags

	A list of strings that describe the tiddler.

	fields

	An arbitrary dictionary of extended (custom) fields on the tiddler.

	text

	The contents of the tiddler. A string.

	revision

	The revision of this tiddler. The type of a revision is unspecified
and is store dependent.

	bag

	The name of the bag in which this tiddler exists, if any.

	recipe

	The name of the recipe in which this tiddler exists, if any.

	store

	A reference to the Store object
which retrieved this tiddler from persistent storage.

	
creator

	Get the creator of this tiddler. If it has not been
set then use modifier.

Use the creator property instead.

	
data_members = ['title', 'creator', 'created', 'modifier', 'modified', 'tags', 'fields', 'type', 'text']

	

	
slots = ['title', 'creator', 'created', 'modifier', 'modified', 'tags', 'fields', 'type', 'text', 'revision', 'bag', 'recipe', 'store']

	

	
tiddlyweb.model.tiddler.current_timestring()

	Translate the current UTC time into a TiddlyWiki conformat timestring.

	
tiddlyweb.model.tiddler.string_to_tags_list(string)

	Given a string representing tags (space-delimited, tags containing spaces
are enclosed in in double brackets), parse them into a list of tag strings.

Duplicates are removed.

	
tiddlyweb.model.tiddler.tags_list_to_string(tags)

	Given a list of tags, turn it into the canonical string representation
(space-delimited, enclosing tags containing spaces in double brackets).

	
tiddlyweb.model.tiddler.timestring_to_datetime(timestring)

	Turn a TiddlyWiki timestring into a datetime object.

Will raise ValueError if the input is not a 12 or 14
digit timestring.

user Module

A class representing a simple user entity.

A User object is not required during TiddlyWeb requests,
credentials extractors and policies may work with arbitrary data for
authentication and authorization. However if a locally stored user
is required the User may be used.

	
class tiddlyweb.model.user.User(usersign, note=None)

	Bases: object

A simple representation of a user. A user is a username, an optional
password, an optional list of roles, and an optional note.

	
add_role(role)

	Add the named role (a string) to this user.

	
check_password(candidate_password)

	Check the password for this user. Return True if correct.

	
del_role(role)

	Remove the named role (a string) from this user.
If it is not there, do nothing.

	
list_roles()

	List (as a list of strings) the roles that this
user has.

	
set_password(password)

	Set the password for this user.

serializations Package

serializations Package

Turn entities to and fro various representations.

This is the base class and interface class used to transform strings
of various forms to model objects and model objects to strings of various
forms.

	
class tiddlyweb.serializations.SerializationInterface(environ=None)

	Bases: object

A Serialization is a collection of methods that
either turn an input string into the object named
by the method, or turn the object into a string
form. A Serialization is not called directly, instead
a Serializer
facade is used.

The interface is fairly simple: For the core
entities that exist in the TiddlyWeb system (bags, recipes and tiddlers there (optionally) exists
<entity>_as and as_<entity> methods in each Serialization.

*_as returns a string form of the entity, perhaps as
HTML, Text, YAML, Atom, whatever the Serialization does.

as_* takes a provided entity and string and updates
the skeletal entity to use the information contained in the
string (in the Serialization format).

There are also three supporting methods, list_tiddlers(),
list_recipes() and list_bags() that provide convenience
methods for presenting a collection of entities in the
Serialization form. A string is returned.

Strings are usually unicode.

If a method doesn’t exist a NoSerializationError is raised
and the calling code is expected to do something intelligent
when trapping it.

	
as_bag(bag, input_string)

	Take input_string which is a serialized bag and use it
to populate the Bag in
bag (if possible).

	
as_recipe(recipe, input_string)

	Take input_string which is a serialized recipe and use it
to populate the Recipe
in recipe (if possible).

	
as_tags(string)

	Not called directly, but made public for future
use. Turn a string into a list of tags.

	
as_tiddler(tiddler, input_string)

	Take input_string which is a serialized tiddler and use it
to populate the Tiddler
in tiddler (if possible).

	
bag_as(bag)

	Serialize a Bag into
this serializer’s form.

	
list_bags(bags)

	Provided a list of bags,
make a serialized list of those bags (e.g. a a list of HTML
links).

	
list_recipes(recipes)

	Provided a list of recipes, make a serialized list of those
recipes (e.g. a a list of HTML links).

	
list_tiddlers(bag)

	Provided a bag, output the
associated tiddlers.

	
recipe_as(recipe)

	Serialize a :py:Recipe
into this serializer’s form.

	
tags_as(tags)

	Not called directly, but made public for future
use. Turn a list of tags into a serialized list.

	
tiddler_as(tiddler)

	Serialize a Tiddler
into this serializer’s form.

html Module

Serialization
for HTML.

HEADER and FOOTER can be overridden to change the basic framing
of the system.

	
class tiddlyweb.serializations.html.Serialization(environ=None)

	Bases: tiddlyweb.serializations.SerializationInterface

Serialize entities and collections to HTML representations. This
is primarily used to create browser based presentations. No support
is provided for turning HTML into entities.

Set css_uri in config to control
CSS.

Set tiddlyweb.links in environ to a list of <link>
elements to include those links in the output.

	
bag_as(bag)

	Bag as HTML,
including a link to the tiddlers within.

	
list_bags(bags)

	Yield the provided bags
as HTML.

	
list_recipes(recipes)

	Yield the provided recipes
as HTML.

	
list_tiddlers(tiddlers)

	Yield the provided tiddlers as HTML.

This is somewhat more complex than the other list methods as
we need to list the tiddler whether it is a revision or not,
if it is in a bag or recipe or if it is a search result.

	
recipe_as(recipe)

	Recipe as HTML,
including a link to the tiddlers within.

	
tiddler_as(tiddler)

	Transform the provided tiddler into an HTML representation.
Render the text of the tiddler
if its type is configured.

json Module

Serialization
for JSON.

	
class tiddlyweb.serializations.json.Serialization(environ=None)

	Bases: tiddlyweb.serializations.SerializationInterface

Turn entities and collections thereof to and from JSON.

	
as_bag(bag, input_string)

	Turn a JSON dictionary into a bag if it is in the proper form.
Include the policy.

	
as_recipe(recipe, input_string)

	Turn a JSON dictionary into a recipe if it is in the proper form.
Include the policy.

	
as_tiddler(tiddler, input_string)

	Turn a JSON dictionary into a tiddler. Any keys in the JSON
which are not recognized will be ignored.

	
bag_as(bag)

	A bag as a
JSON dictionary. Includes the bag’s policy.

	
list_bags(bags)

	Create a JSON list of bag
names from the provided bags.

	
list_recipes(recipes)

	Create a JSON list of recipe names from the provided recipes.

	
list_tiddlers(tiddlers)

	List the provided tiddlers as JSON. The format is a
list of dicts in the form described by _tiddler_dict().

If fat=1 is set in tiddlyweb.query include the text
of each tiddler in the output.

If render=1 is set in tiddlyweb.query include the
rendering of the text
of each tiddler in the output, if the tiddler is renderable.

	
recipe_as(recipe)

	A recipe as a
JSON dictionary. Includes the recipe’s policy.

	
tiddler_as(tiddler)

	Create a JSON dictionary representing a tiddler, as described by
_tiddler_dict() plus the text of the tiddler.

If fat=0 is set in tiddlyweb.query do not include the
text of the tiddler in the output.

If render=1 is set in tiddlyweb.query include the
rendering of the text
of the tiddler in the output, if the tiddler is renderable.

text Module

Serialization
for plain text.

	
class tiddlyweb.serializations.text.Serialization(environ=None)

	Bases: tiddlyweb.serializations.SerializationInterface

Serialize entities and collections to and from
textual representations. This is primarily used
by the text
Store.

	
as_recipe(recipe, input_string)

	Turn a string into a recipe if possible.

	
as_tiddler(tiddler, input_string)

	Transform a text representation of a tiddler into a tiddler object.

	
field = 'text'

	

	
fields_as(tiddler)

	Turn extended tiddler
fields into RFC 822-style header strings.

	
list_bags(bags)

	Return a linefeed separated list of bag names in the bags list.

	
list_recipes(recipes)

	Return a linefeed separated list of recipe names in the recipes list.

	
list_tiddlers(tiddlers)

	Return a linefeed separated list of tiddler titles in the tiddlers list.

If the tiddlers are a collection of revisions, include the
revision identifier.

	
recipe_as(recipe)

	Dump a recipe as text.

	
tiddler_as(tiddler, omit_empty=False, omit_members=None)

	Represent a tiddler
as a text string: headers, blank line, text.

omit_* arguments are non-standard options, usable only when this
method is called directly (outside the regular Serializer interface)

If omit_empty is True, don’t emit empty Tiddler members.

omit_members can be used to provide a list of members to not
include in the output.

	
tiddler_members = ['creator', 'created', 'modifier', 'modified', 'tags', 'type']

	

stores Package

stores Package

Storage systems for TiddlyWeb.

The base class and Interface for classes used to get and put data
into a storage system.

	
class tiddlyweb.stores.StorageInterface(store_config=None, environ=None)

	Bases: object

An implementation of the StorageInterface is a collection
of methods that either store an object or retrieve an object.
It is not usually access directly but instead called through
a Store facade.

The interface is fairly simple: For the data entities that
exist in the TiddlyWeb system there (optionally) exists
<entity>_put, <entity>_get and <entity>_delete
methods.

When <entity>_get is used, an empty object is provided.
This object is filled by the store method.

There are also five supporting methods, list_recipes(),
list_bags(), list_users(),
list_bag_tiddlers(), and list_tiddler_revisions()
that provide methods for getting a collection.

It is useful to understand the classes in the tiddlyweb.model
package when implementing new StorageInterface classes.

If a method is not implemented by the StorageInterface
a StoreMethodNotImplemented exception is
raised and the calling code is expected to handle that intelligently.

It is somewhat common to not implement list_tiddler_revisions().
When this is done it means the instance does not support revisions.

	
bag_delete(bag)

	Remove bag from the store,
including the tiddlers
contained by the bag.

	
bag_get(bag)

	Get the indicated bag
from the store.

	
bag_put(bag)

	Put bag into the store.

	
list_bag_tiddlers(bag)

	Retrieve a list of all tiddler objects in the named
bag.

	
list_bags()

	Retrieve a list of all bag objects in the system.

	
list_recipes()

	Retrieve a list of all recipe objects in the system.

	
list_tiddler_revisions(tiddler)

	Retrieve a list of all the revision identifiers
for the one tiddler.

	
list_users()

	Retrieve a list of all user objects in the system.

	
recipe_delete(recipe)

	Remove the recipe
from the store, with no impact on the recipe’s tiddlers.

	
recipe_get(recipe)

	Get the indicated recipe
from the store.

	
recipe_put(recipe)

	Put recipe
into the store.

	
search(search_query)

	Search the entire tiddler store for search_query.

How search operates is entirely dependent on the StorageInterface
implementation. The only requirement is that an iterator of
tiddler objects is returned.

	
tiddler_delete(tiddler)

	Delete tiddler
(and all its revisions) from the store.

	
tiddler_get(tiddler)

	Get a tiddler from the store, returning a populated tiddler
object. tiddler.creator and tiddler.created are based on
the modifier and modified of the first revision of a tiddler.

	
tiddler_put(tiddler)

	Put tiddler
into the store.

	
user_delete(user)

	Delete user from the store.

This will remove the user object but has no impact on other entities
which may have been modified by the user.

	
user_get(user)

	Get user from the store.

	
user_put(user)

	Put user into the store.

text Module

A text-based StorageInterface that stores entities
in a hierarchy of directories in the filesystem.

	
class tiddlyweb.stores.text.Store(store_config=None, environ=None)

	Bases: tiddlyweb.stores.StorageInterface

A StorageInterface
which stores text-based representations in a collection of directories
and files.

Some of the entities are serialized to and from text by the
text
Serializer.

	
bag_delete(bag)

	Delete bag and the
tiddlers within from
the system.

	
bag_get(bag)

	Fill bag with data
from the store.

	
bag_put(bag)

	Put bag into the store.

	
list_bag_tiddlers(bag)

	List all the tiddlers
in the provided bag.

	
list_bags()

	List all the bags
in the store.

	
list_recipes()

	List all the recipes
in the store.

	
list_tiddler_revisions(tiddler)

	List all the revisions of one tiddler, returning a list of ints.

	
list_users()

	List all the users
in the store.

	
recipe_delete(recipe)

	Remove a recipe,
irrevocably, from the system. No impact on tiddlers.

	
recipe_get(recipe)

	Fill recipe with
data in the store.

	
recipe_put(recipe)

	Put recipe
into the store.

	
search(search_query)

	Search in the store for tiddlers that match search_query.
This is intentionally implemented as a simple and limited grep
through files.

	
tiddler_delete(tiddler)

	Irrevocably remove tiddler from the filesystem.

	
tiddler_get(tiddler)

	Fill tiddler with
data from the store.

	
tiddler_put(tiddler)

	Write a tiddler
into the store. We only write if the tiddler’s bag already exists. Bag creation is a
separate action.

	
user_delete(user)

	Delete user from
the store.

	
user_get(user)

	Fill user with
data from the store.

	
user_put(user)

	Put user data into the store.

web Package

web Package

The routines, modules, etc. that are involved in the
presentation and handling of content over HTTP.

These are the parts that makes it TiddlyWeb, not Tiddly
something else.

challenge Module

WSGI App for running the base challenge system, which lists and links
to the available challengers. If there is only one
challenger, redirect to it.

	
tiddlyweb.web.challenge.base(environ, start_response)

	The basic listing page that shows all available
challenger systems. If there is only
one challenger, we redirect to that instead of listing.

	
tiddlyweb.web.challenge.challenge_get(environ, start_response)

	Dispatch a GET request to the chosen challenger.

	
tiddlyweb.web.challenge.challenge_post(environ, start_response)

	Dispatch a POST request to the chosen challenger.

extractor Module

Extract of user credentials from incoming web requests.
UserExtract passes to a stack of extractors. If an
extractor
returns something other than None, we have found
valid data with which to set tiddlyweb.usersign.

	
class tiddlyweb.web.extractor.UserExtract(application)

	Bases: object

WSGI Middleware to set the tiddlyweb.usersign, if it can
be found in the request.

listentities Module

Common code used for listing bags
and recipes in HTTP responses.

	
tiddlyweb.web.listentities.list_entities(environ, start_response, method_name, store_list=None, serializer_list=None)

	Get an optionally filtered list
of all the bags or
recipes
the current tiddlyweb.usersign can read.

negotiate Module

WSGI Middleware to do a limited version of content negotiation
and put the type in tiddlyweb.type. On GET and HEAD
requests the Accept header is examined. On POST and PUT,
Content-Type. If extensions are provided on a URI used in a GET
request if the extension matches something in extension_types in
config, the type indicated by the
extension wins over the Accept header.

	
class tiddlyweb.web.negotiate.Negotiate(application)

	Bases: object

Perform a form of content negotiation to provide information
to the WSGI environment that will later be used to choose
serializers.

	
tiddlyweb.web.negotiate.figure_type(environ)

	Determine either the Content-Type (for POST and PUT)
or Accept header (for GET) and put that information
in tiddlyweb.type in the WSGI environment.

query Module

WSGI Middleware that extracts CGI parameters from the
QUERY_STRING and puts them in tiddlyweb.query in the
environ in the same structure that cgi.py uses (dictionary of lists).
If the current request is a POST of HTML form data, parse that too.

	
class tiddlyweb.web.query.Query(application)

	Bases: object

Extract CGI parameter data from QUERY_STRING and POSTed form data.

	
extract_query(environ)

	Read the QUERY_STRING and body (if a POSTed form) to extract
query parameters. Put the results in tiddlyweb.query in
environ. The query names and values are decoded from UTF-8 to
unicode.

If there are file uploads in posted form data, the files are
not put into tiddlyweb.query. Instead the file handles are
appended to tiddlyweb.input_files.

sendentity Module

Send a bag or recipe out over HTTP, first serializing to the correct type.

This consolidates common code for bags and recipes.

	
tiddlyweb.web.sendentity.send_entity(environ, start_response, entity)

	Send a bag or recipe out over HTTP, first
serializing to
the correct type. If an incoming Etag validates, raise a
304 response.

sendtiddlers Module

Routines related to sending a list of tiddlers out to the web, including optionally
filtering those tiddlers and
validating cache-oriented request headers.

	
tiddlyweb.web.sendtiddlers.send_tiddlers(environ, start_response, tiddlers=None)

	Output the tiddlers
contained in the provided Tiddlers collection in a Negotiated representation.

serve Module

Functions and Classes for running a TiddlyWeb server, including
optionally a built in web server.

	
class tiddlyweb.web.serve.Configurator(application, config)

	Bases: object

WSGI middleware to set tiddlyweb.config in environ for
every request from config.

	
class tiddlyweb.web.serve.RequestStarter(application)

	Bases: object

WSGI middleware that logs basic request information and cleans
PATH_INFO in the environment.

PATH_INFO cleaning is done to ensure that there is a
well known encoding of special characters and to support
/ in entity names (see clean_path_info()).

	
clean_path_info(environ)

	Clean PATH_INFO in the environment.

This is necessary because WSGI servers tend to decode
the URI before putting it in PATH_INFO. This means that
uri encoded data, such as the %2F encoding of /
will be decoded before we get to route dispatch handling,
by which time the / is treated as a separator. People
say that the right thing to do here is not use %2F.
This is hogwash. The right thing to do is not decode
PATH_INFO. In this solution if REQUEST_URI is present
we use a portion of it to set PATH_INFO.

	
tiddlyweb.web.serve.load_app(app_prefix=None, dirname=None)

	Create our application from a series of layers. The innermost
layer is a Selector application based on urls_map defined in
config. This is surrounded by wrappers,
which either set something in the environment, modify the request,
or transform the response. The wrappers are WSGI middleware defined
by server_request_filters and server_response_filters in
tiddlyweb.config.

	
tiddlyweb.web.serve.start_server(config)

	Start a simple webserver, from wsgiref, to run our app.

util Module

General utility routines shared by various web related modules.

	
tiddlyweb.web.util.bag_etag(environ, bag)

	Construct an etag for a bag.

	
tiddlyweb.web.util.bag_url(environ, bag, full=True)

	Construct a URL for a bag.

	
tiddlyweb.web.util.check_bag_constraint(environ, bag, constraint)

	Check to see if the provided bag
allows the current tiddlyweb.usersign to perform the action described
by constraint. Lets NoBagError raise if the bag does not exist.

This is a web util because user and store come from the WSGI environ.

	
tiddlyweb.web.util.check_incoming_etag(environ, etag_string, cache_control='no-cache', last_modified=None, vary='Accept')

	Raise 304 if the provided etag_string is the same as that found
in the If-None-Match header of the incoming request.

Return incoming_etag to indicate if an etag was there but
did not match.

	
tiddlyweb.web.util.check_last_modified(environ, last_modified_string, etag='', cache_control='no-cache', vary='Accept')

	Raise 304 if an If-Modified-Since header matches
last_modified_string.

	
tiddlyweb.web.util.content_length_and_type(environ)

	For PUT or POST request there must be Content-Length and
Content-Type headers. Raise 400 if not present in the request.

	
tiddlyweb.web.util.datetime_from_http_date(http_datestring)

	Turn an HTTP formatted date into a datetime object.
Return None if the date string is invalid.

	
tiddlyweb.web.util.encode_name(name)

	Encode a unicode value as utf-8 and then URL encode that
string. Use for entity titles in URLs.

	
tiddlyweb.web.util.entity_etag(environ, entity)

	Construct an Etag from the digest of the JSON reprepresentation
of an entity.

The JSON representation provides a reasonably repeatable and
unique string of data.

	
tiddlyweb.web.util.escape_attribute_value(text)

	Escape common HTML character entities, including double quotes
in attribute values

This assumes values are enclosed in double quotes (key=”value”).

	
tiddlyweb.web.util.get_route_value(environ, name)

	Retrieve and decode name from data provided in WSGI route.

If name is not present in the route, allow KeyError to raise.

	
tiddlyweb.web.util.get_serialize_type(environ, collection=False, accept_type=False)

	Look in the environ to determine which serializer should be used for this request.

If collection is True, then the presence of an extension
on the URI which does not match any serializer should lead to a 415.

	
tiddlyweb.web.util.handle_extension(environ, resource_name)

	Look for an extension (as defined in config)
on the provided resource_name and trim it off to give the
“real” resource name.

	
tiddlyweb.web.util.html_encode(text)

	Encode &, < and > entities in text that will
be used in or as HTML.

	
tiddlyweb.web.util.html_frame(environ, title='')

	Return the header and footer from the current HTML
serialization.

	
tiddlyweb.web.util.http_date_from_timestamp(timestamp)

	Turn a modifier or created tiddler timestamp
into a properly formatted HTTP date. If the timestamp
is invalid use the current time as the timestamp.

	
tiddlyweb.web.util.make_cookie(name, value, mac_key=None, path=None, expires=None, httponly=True, domain=None)

	Create a cookie string, optionally with a MAC, path and
expires value. If expires is provided, its value should be
in seconds.

	
tiddlyweb.web.util.read_request_body(environ, length)

	Read the wsgi.input handle to get the request body.

Length is a required parameter because it is tested for existence
earlier in the process.

	
tiddlyweb.web.util.recipe_etag(environ, recipe)

	Construct an etag for a recipe.

	
tiddlyweb.web.util.recipe_url(environ, recipe, full=True)

	Construct a URL for a recipe.

	
tiddlyweb.web.util.server_base_url(environ)

	Using information in tiddlyweb.config, construct
the base URL of the server, without the trailing /.

	
tiddlyweb.web.util.server_host_url(environ)

	Generate the scheme and host portion of our server url.

	
tiddlyweb.web.util.tiddler_etag(environ, tiddler)

	Construct an etag for a tiddler from the tiddler’s attributes,
but not its text.

	
tiddlyweb.web.util.tiddler_url(environ, tiddler, container='bags', full=True)

	Construct a URL for a tiddler.

validator Module

A collection of routines for validating, santizing and otherwise messing
with content coming in from the web to be tiddlers, bags or recipes.

The validators can be extended by adding functions to the BAG_VALIDATORS,
RECIPE_VALIDATORS and TIDDLER_VALIDATORS. The functions take an
entity object, and an optional WSGI environ dict.

	
exception tiddlyweb.web.validator.InvalidBagError

	Bases: exceptions.Exception

The provided bag has not passed
a validation routine and has been rejected. The caller should stop
processing and return an error to calling code or user-agent.

	
exception tiddlyweb.web.validator.InvalidRecipeError

	Bases: exceptions.Exception

The provided recipe has
not passed a validation routine and has been rejected. The caller
should stop processing and return an error to calling code or
user-agent.

	
exception tiddlyweb.web.validator.InvalidTiddlerError

	Bases: exceptions.Exception

The provided tiddler
has not passed a validation routine and has been rejected.
The caller should stop processing and return an error to calling
code or user-agent.

	
tiddlyweb.web.validator.sanitize_desc(entity, environ)

	Strip any dangerous HTML which may be present in a bag or recipe description.

	
tiddlyweb.web.validator.sanitize_html_fragment(fragment)

	Santize an HTML fragment, returning a copy of the fragment
that has been cleaned up.

	
tiddlyweb.web.validator.validate_bag(bag, environ=None)

	Pass the bag to each of
the functions in BAG_VALIDATORS, in order, either changing
the content of the bags’s attributes, or if some aspect of the
bag can not be accepted raising InvalidBagError.

BAG_VALIDATORS may be extended by plugins.

validate_bag is called whenever a bag is PUT via HTTP.

	
tiddlyweb.web.validator.validate_recipe(recipe, environ=None)

	Pass the recipe to
each of the functions in RECIPE_VALIDATORS, in order, either
changing the content of the recipes’s attributes, or if some aspect
of the recipe can not be accepted raising InvalidRecipeError.

RECIPE_VALIDATORS may be extended by plugins.

validate_recipe is called whenever a recipe is PUT via HTTP.

	
tiddlyweb.web.validator.validate_tiddler(tiddler, environ=None)

	Pass the tiddler
to each of the functions in TIDDLER_VALIDATORS, in order,
either changing the content of the tiddler’s attributes, or if
some aspect of the tiddler can not be accepted raising
InvalidTiddlerError.

TIDDLER_VALIDATORS is an empty list which may be extended
by plugins.

validate_tiddler is called from web handlers, when the accept constraint on
the policy of the
bag containing the
tiddler does not pass.

wsgi Module

WSGI Middleware apps that haven’t gotten around to being extracted to
their own modules.

	
class tiddlyweb.web.wsgi.EncodeUTF8(application)

	Bases: object

WSGI Middleware to ensure that the unicode content sent out the
pipe is encoded to UTF-8. Within the application string-based content
is unicode (i.e. not encoded).

	
class tiddlyweb.web.wsgi.Header(application)

	Bases: object

If REQUEST_METHOD is HEAD, change it internally to GET and
consume the generated output so the response has no body.

	
class tiddlyweb.web.wsgi.PermissionsExceptor(application)

	Bases: object

Trap permissions exceptions and turn them into HTTP
exceptions so the errors are propagated to clients.

	
class tiddlyweb.web.wsgi.SimpleLog(application)

	Bases: object

WSGI Middleware to write a very simple log to stdout.

Borrowed from Paste Translogger

	
format = '%(REMOTE_ADDR)s - %(REMOTE_USER)s [%(time)s] "%(REQUEST_METHOD)s %(REQUEST_URI)s %(HTTP_VERSION)s" %(status)s %(bytes)s "%(HTTP_REFERER)s" "%(HTTP_USER_AGENT)s"'

	

	
write_log(environ, req_uri, status, size)

	Write the log info out in a formatted form to logging.info.

This is rather more complex than desirable because there is
a mix of str and unicode in the gathered data and it
needs to be made acceptable for output.

	
class tiddlyweb.web.wsgi.StoreSet(application)

	Bases: object

WSGI Middleware that sets our choice of Store in the environ. That is, initialize
the store for each request.

	
class tiddlyweb.web.wsgi.TransformProtect(application)

	Bases: object

WSGI Middleware to add a Cache-Control: no-transform` header
so that mobile companies that transcode content over their 3G (etc)
networks don’t, as it will break various JavaScript things,
including TiddlyWiki.

Subpackages

	challengers Package
	challengers Package

	cookie_form Module

	extractors Package
	extractors Package

	http_basic Module

	simple_cookie Module

	handler Package
	handler Package

	bag Module

	chronicle Module

	recipe Module

	search Module

	tiddler Module

challengers Package

challengers Package

The ChallengerInterface class.

	
class tiddlyweb.web.challengers.ChallengerInterface

	Bases: object

An interface for challenging users for authentication purposes.
The chalenger basically does whatever is required and may result
in doing something to a response that causes the user agent’s next
request to pass an extractor.

Though there is no requirement for there to be a one to one
correspondence between a Challenger and an Extractor, it will often be
the case that a Challenger will need a particular Extractor
in order to be effective.

A Challenger is a WSGI application.

	
challenge_get(environ, start_response)

	Respond to a GET request.

	
challenge_post(environ, start_response)

	Respond to a POST request.

cookie_form Module

A challenger
that presents or validates a form for getting a username and password.

	
class tiddlyweb.web.challengers.cookie_form.Challenger

	Bases: tiddlyweb.web.challengers.ChallengerInterface

A simple login challenger that asks the user agent, via an HTML form,
for a username and password and vaidates it against a User
entity in the store.

If valid, a cookie is set in the response. This is used in subsequent
requests by the simple_cookie credentials
extractor.

	
challenge_get(environ, start_response)

	Respond to a GET request by sending a form.

	
challenge_post(environ, start_response)

	Respond to a POST by processing data sent from a form.
The form should include a username and password. If it
does not, send the form aagain. If it does, validate
the data.

	
desc = 'TiddlyWeb username and password'

	

extractors Package

extractors Package

The ExtractorInterface class, used to extract and validate
information in web requests that may identify a user. Often,
but not always, that information was originally created by
a challenger.

	
class tiddlyweb.web.extractors.ExtractorInterface

	Bases: object

An interface for user extraction.

Given a WSGI environ, figure out if the request contains information
which can be used to identify a valid user. If it does, return a dict
including information about that user.

If it doesn’t return False.

	
extract(environ, start_response)

	Look at the incoming request and try to extract a user.

	
load_user(environ, usersign)

	Check the User database
in the store for a user
matching this usersign. The user is not required to exist, but if
it does it can be used to get additional information about the
user, such as roles.

http_basic Module

A very simple extractor that looks at the
HTTP Authorization header and looks for Basic auth information
therein.

	
class tiddlyweb.web.extractors.http_basic.Extractor

	Bases: tiddlyweb.web.extractors.ExtractorInterface

An extractor
for HTTP Basic Authentication. If there is an Authorization header
attempt to get a username and password out of it and compare with
User information in the
Store. If the password is valid,
return the user information. Otherwise return False.

	
extract(environ, start_response)

	Look in the request for an Authorization header.

simple_cookie Module

An extractor
that looks at a cookie named tiddlyweb_user.

	
class tiddlyweb.web.extractors.simple_cookie.Extractor

	Bases: tiddlyweb.web.extractors.ExtractorInterface

Look in the headers for a cookie named tiddlyweb_user.

If it is there and the associated hashed value validates against
a server side secret, return the indicated user.

	
extract(environ, start_response)

	Extract the cookie, if there, from the headers
and attempt to validate its contents.

handler Package

handler Package

Convenience routines for presenting the root of the web server.

Here because nowhere else seems right.

	
tiddlyweb.web.handler.root(environ, start_response)

	Convenience application to provide an entry point at root.

bag Module

Methods for accessing Bag entities.

	
tiddlyweb.web.handler.bag.delete(environ, start_response)

	Handle DELETE on a single bag URI.

Remove the bag and the
tiddlers within
from the store.

How the store chooses to handle remove and what it means is
up to the store.

	
tiddlyweb.web.handler.bag.get(environ, start_response)

	Handle GET on a single bag URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a bag (the bag itself, not the tiddlers within).

	
tiddlyweb.web.handler.bag.get_tiddlers(environ, start_response)

	Handle GET on a tiddlers-within-a-bag URI.

Get a list representation of the tiddlers in a bag.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.bag.list_bags(environ, start_response)

	Handle GET on the bags URI.

List all the bags that are
readable by the current usersign.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.bag.put(environ, start_response)

	Handle PUT on a single bag URI.

Put a bag to the server,
meaning the description and policy of the bag, if policy allows.

chronicle Module

A chronicle is a stack of tiddlers, usually revisions of
one tiddler. By POSTing a chronicle of tiddlers originally
named A to tiddler B, it is possible to rename a tiddler
while preserving revision history.

	
tiddlyweb.web.handler.chronicle.post_revisions(environ, start_response)

	Handle a POST of a chronicle of tiddlers at a tiddler revisions
URI.

Take a collection of JSON tiddlers, each with a
text key and value, and process them into the store.

recipe Module

Methods for accessing Recipe entities.

	
tiddlyweb.web.handler.recipe.delete(environ, start_response)

	Handle DELETE on a single recipe URI.

Delete a recipe.
This just removes the recipe, not any associated bags or tiddlers.

	
tiddlyweb.web.handler.recipe.get(environ, start_response)

	Handle GET on a single recipe URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a recipe (just the recipe itself,
not the tiddlers it can produce).

	
tiddlyweb.web.handler.recipe.get_tiddlers(environ, start_response)

	Handle GET on a tiddlers-within-a-recipe URI.

Get a list representation of the tiddlers generated from a recipe.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.recipe.list_recipes(environ, start_response)

	Handle GET on the recipes URI.

List all the recipes that are
readable by the current usersign.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.recipe.put(environ, start_response)

	Handle PUT on a single recipe URI.

Put a recipe to the server,
meaning the description, policy and recipe list of the recipe,
if policy allows.

search Module

Handle searches for tiddlers
if the configured store
supports search.

	
tiddlyweb.web.handler.search.get(environ, start_response)

	Handle GET on the search URI.

Perform a search against the store.

What search means and what results are returned is dependent
on the search implementation (if any) in the chosen store.

	
tiddlyweb.web.handler.search.get_search_query(environ)

	Inspect tiddlyweb.query in the
environment to find the search query in a parameter named q.

	
tiddlyweb.web.handler.search.get_tiddlers(environ)

	Call search in the store
to get the generator of tiddlers matching the query found
by get_search_query().

tiddler Module

Methods for accessing Tiddler
entities.

	
tiddlyweb.web.handler.tiddler.delete(environ, start_response)

	Handle DELETE on a single tiddler URI.

Delete a tiddler from
the store.

What delete means is up to the store.

	
tiddlyweb.web.handler.tiddler.get(environ, start_response)

	Handle GET on a single tiddler or tiddler revision URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a tiddler.

	
tiddlyweb.web.handler.tiddler.get_revisions(environ, start_response)

	Handle GET on the collection of revisions of single tiddler URI.

Get a list representation in some serialization determined by
tiddlyweb.web.negotiate of the revisions of a tiddler.

	
tiddlyweb.web.handler.tiddler.put(environ, start_response)

	Handle PUT on a single tiddler URI.

Put a tiddler to
the server.

	
tiddlyweb.web.handler.tiddler.validate_tiddler_headers(environ, tiddler)

	Check ETag and last modified header information to
see if a) on GET the user agent can use its cached tiddler
b) on PUT we have edit contention.

wikitext Package

wikitext Package

Functions for rendering any tiddler that has been identified as wikitext
into the rendered form (usually HTML) of that wikitext.

Wikitext rendering is engaged when a tiddler is requested via a
GET, when the negotiated media-type of the request is html,
and when tiddler.type is either None or in the keys of the
dictionary associated with the
tiddlyweb.config['wikitext.type_render_map'].

When tiddler.type is None, the renderer named in
tiddlyweb.config['wiktext.default_renderer'] is used. This is
either a module in the tiddlyweb.wikitext package,
or a module on sys.path.

When tiddler.type is something other than None, the renderer is
determined by looking up the type in
tiddlyweb.config['wikitext.type_render_map']. The found value is a
module of the same type described above.

The renderer module has a function render.

	
tiddlyweb.wikitext.render_wikitext(tiddler=None, environ=None)

	Take a tiddler
and render wikitext in tiddler.text to some kind of HTML format.

raw Module

A default simple wikitext renderer which does not render the wikitext
but instead wraps it in pre tags.

	
tiddlyweb.wikitext.raw.render(tiddler, environ)

	Wrap HTML encoded wikitext with pre tags.

commands Package

commands Package

Command line tools for TiddlyWeb are accessed via the twanager
script. Each command is named by the first argument passed to the
script.

The commands defined in this package are added to a list of available
commands using the twanager plugin mechanism. That list is extensible
via twanager_plugins in tiddlyweb.config and
tiddlyweb.manage.make_command().

Typical commands do things like starting a server, creating a user and
listing existing entities.

	
tiddlyweb.commands.init(config)

	Establish the commands during twanager startup.

interact Module

This module provides a twanager command interact which
provides a Python shell preloaded with the necessary local
variables to interact with the current instance’s store and the entities within. The locals are:

	Recipe

	Bag

	Tiddler

	User

	Policy

	Serializer

	control

	util

	web

	An environ containing tiddlyweb.config and
tiddlyweb.store` keys and values.

	A config containing the current tiddlyweb.config.

These are enough to do most operations.

	
class tiddlyweb.commands.interact.TabCompleter(namespace=None)

	Bases: rlcompleter.Completer

Tab completion for the interactive shell that allows pressing
the tab character to indicate an indent.

	
complete(text, state)

	Complete the provided text. If there is no text, indent.

	
class tiddlyweb.commands.interact.TiddlyWebREPL(locals=None, filename='<console>')

	Bases: code.InteractiveConsole

An interactive console for the current TiddlyWeb instance.

This augments it’s super class by adding tab completion and
establishing a set of useful local variables.

	
tiddlyweb.commands.interact.launch_shell(config, store, args)

	Establish the basic environment for the shell and then start it.

filters Package

filters Package

Overarching handler for TiddlyWeb filters [http://docs.tiddlyweb.com/filter].

Filters provide an extensible syntax for limiting any Collection by attributes on the entities in
the collection. Though primarily for Tiddlers, Bags and Recipes can be filtered as well.

The basic filters provide for selecting and sorting on attributes of the
entities and for limiting (the number of) entities. These basic types of
filter can be extended with plugins, and the ways attributes are processed
can also be extended.

Filters are parsed from a string that is formatted as a CGI query string
with parameters and arguments. The parameter is a filter type. Each
filter is processed in sequence: the first processing all the entities
handed to it, the next taking only those that result from the first.

Filters can be extended by adding more parsers to FILTER_PARSERS.
Parsers for existing filter types may be extended as well (see the
documentation for each type).

The call signature for a filter is:

filter(entities, indexable=indexable, environ=environ)

The attribute and value for which a filter filters is established in
the parsing stage and are set as upvalues of the filter closure that
gets created.

indexable and environ are optional parameters that in special cases
allow a select style filter to be
optimized with the use of an index. In the current implementation this is
only done when:

	the select filter is the first filter in a stack of filters passed to
recursive_filter()

	the entities to be filtered are tiddlers in the context of a bag (this helps to constrain the index)

When both of the above are true the system looks for a module named by
tiddlyweb.config['indexer'], imports it, looks for a function called
indexy_query, and passes environ and information about the bag
and the attribute being selected.

What index_query does to satisfy the query is up to the module. It
should return a list of tiddlers that have been loaded from the
tiddlyweb.store.Store.

If for some reason index_query does not wish to perform the query (e.g.
the index cannot satisfy the query) it may raise FilterIndexRefused and
the normal filtering process will be performed.

Note that testing should be done to determine if using an index is
of any benefit. In some stores (for example caching stores) traversing
the tiddlers is faster than using an index.

	
exception tiddlyweb.filters.FilterError

	Bases: exceptions.Exception

An exception to throw when an attempt is made to filter on an
unavailable attribute.

	
exception tiddlyweb.filters.FilterIndexRefused

	Bases: tiddlyweb.filters.FilterError

A filter index has refused to satisfy a filter with its index.

	
tiddlyweb.filters.parse_for_filters(query_string, environ=None)

	Take a string that looks like a CGI query string and parse it
for filters. Return a tuple of a list of filter functions and
a string of whatever was in the query string that did not result
in a filter.

	
tiddlyweb.filters.recursive_filter(filters, entities, indexable=False)

	Recursively process the list of filters found by
parse_for_filters() against the given list of entities.

Each next filter processes only those entities that were results of
the previous filter.

Misnamed, early versions were more truly recursive.

limit Module

A filter type to limit a group of entities
using a syntax similar to SQL Limit:

limit=<index>,<count>
limit=<count>

	
tiddlyweb.filters.limit.limit(entities, count=0, index=0)

	Make a slice of a list of entities based on a count and index.

	
tiddlyweb.filters.limit.limit_parse(count='0')

	Parse the argument of a limit filter
for a count and index argument, return a function which does the limiting.

Exceptions while parsing are passed up the stack.

select Module

A filter type for selecting only some
entities, usually tiddlers,
from a collection of entities, usually by an attribute of the tiddlers.

The syntax is:

select=attribute:value # attribute is value
select=attribute:!value # attribute is not value
select=attribute:>value # attribute is greater than value
select=attribute:<value # attribute is less than value

ATTRIBUTE_SELECTOR is checked for a function which returns True
or False for whether the provided value matches for the entity being
tested. The default case is lower case string equality. Other functions
may be provided by plugins. Attributes may be virtual, i.e. not real
attributes on entity. For example we can check for the presence of a
tag in a tiddlers tags attribute with:

select=tag:tagvalue

An attribute function takes an entity, an attribute name and a value.
It may then do anything it wants with it, and must return True or
False.

	! negates a selection, getting all those entities that don’t match.

	> gets those entities that sort greater than the value.

	< gets those entities that sort less than the value.

When doing sorting ATTRIBUTE_SORT_KEY is consulted to canonicalize the
value. See tiddlyweb.filters.sort.

	
tiddlyweb.filters.select.bag_in_recipe(entity, attribute, value)

	Return True if the named bag
is in the recipe.

	
tiddlyweb.filters.select.default_func(entity, attribute, value)

	Look in the entity for an attribute with the provided value.
First real object attributes are checked, then, if available,
extended fields. If neither of these are present, return False.

	
tiddlyweb.filters.select.field_in_fields(entity, attribute, value)

	Return True if the entity has the named field.

	
tiddlyweb.filters.select.select_by_attribute(attribute, value, entities, negate=False, indexable=None, environ=None)

	Select entities where value of attribute matches the provide value.

If negate is True, get those that don’t match.

	
tiddlyweb.filters.select.select_parse(command)

	Parse a select filter string into
attributes and arguments and return a function (for later use)
which will do the selecting.

	
tiddlyweb.filters.select.select_relative_attribute(attribute, value, entities, greater=False, lesser=False, environ=None)

	Select entities that sort greater or less than the provided value
for the provided attribute.

	
tiddlyweb.filters.select.tag_in_tags(entity, attribute, value)

	Return True if the provided entity has a tag of value in its
tag list.

	
tiddlyweb.filters.select.text_in_text(entity, attribute, value)

	Return True if the provided entity has the string provided in
value within its text attribute.

sort Module

A filter type to sort a collection of
entities by some attribute. The syntax is:

sort=attribute # sort ascending
sort=-attribute # sort descending

Atribute is either a real entity attribute or a key in
ATTRIBUTE_SORT_KEY that has as its value a function used to generate a
key to pass to the sort. ATTRIBUTE_SORT_KEY can be extended by plugins.

	
tiddlyweb.filters.sort.as_int(attribute)

	Treat attribute as int if it looks like one.

	
tiddlyweb.filters.sort.date_to_canonical(datestring)

	Take a (TiddlyWiki-style) string of 14 or less digits and turn it
into 14 digits for the sake of comparing entity dates.

	
tiddlyweb.filters.sort.sort_by_attribute(attribute, entities, reverse=False, environ=None)

	Sort a group of entities by some attribute.
Inspect ATTRIBUTE_SORT_KEY to see if there is a special
function by which we should generate the value for this
attribute.

	
tiddlyweb.filters.sort.sort_parse(attribute)

	Create a function which will sort a collection of entities.

model Package

model Package

Models for TiddlyWeb Entities.

Classes representing the important entities in the TiddlyWeb system.

These are intentionally limited, making no effort to handle their own
persistence or presentation. That is the job of the store and serializer.

bag Module

A module containing the Bag class.

	
class tiddlyweb.model.bag.Bag(name, desc=u'')

	Bases: object

A Bag is a virtual container for tiddlers. The bag provides a domain
for the tiddlers within identifying those tiddlers uniquely and
optionally acting a topical, functional or authorization container
for the tiddlers.

A bag can contain many tiddlers but every tiddler must have a different
title. The canonical identifier of a tiddler is the combination of the
containing bag’s name and the tiddler’s title.

Containership is achieved via association: There are no methods on a
bag to access the contained tiddlers. These are found via
store.list_bag_tiddlers.

A Bag has a Policy
which may be used to control access to both the Bag and the tiddlers
within. These controls are optional and are primarily designed for
use within the web handlers.

collections Module

Classes representing collections of bags, recipes and tiddlers.

Because the main reason for having a collection is to send it out over
the web, the collections keep track of their last-modified time and
generate a hash suitable for use as an ETag.

	
class tiddlyweb.model.collections.Collection(title='')

	Bases: object

Base class for all collections.

Can be used directly for general collections if required.

A collection acts as generator, yielding one of its contents when
iterated.

	
add(thing)

	Add an item to the container, updating the digest and
modified information.

	
hexdigest()

	Return the current hex representation of the hash digest of this
collection.

	
class tiddlyweb.model.collections.Container(title='')

	Bases: tiddlyweb.model.collections.Collection

A collection of things which have a name attribute.

In TiddlyWeb this is for lists of bags and recipes.

	
class tiddlyweb.model.collections.Tiddlers(title='', store=None, bag=None, recipe=None)

	Bases: tiddlyweb.model.collections.Collection

A Collection specifically for tiddlers.

This differs from the base class in two ways:

The calculation of the digest is more detailed in order to create
stong ETags for the collection.

When iterated, if store is set on the Collection, then a yielded
tiddler will be loaded from the store to fill in all its attributes.
When a tiddler is added to the collection, if it is already filled,
a non-full copy is made and put into the collection. This is done
to save memory and because often the data is not needed.

If collections.use_memory is True in config then the
full tiddler is kept in the collection. On servers with adequate
memory this can be more efficient.

	
add(tiddler)

	Add a reference to the tiddler to the container, updating the
digest and modified information. If the tiddler has recently been
deleted, resulting in a StoreError, don’t add it.

policy Module

A module containing the Policy class and associated
exceptions.

	
exception tiddlyweb.model.policy.ForbiddenError

	Bases: tiddlyweb.model.policy.PermissionsError

The provided user cannot do this action.

	
exception tiddlyweb.model.policy.PermissionsError

	Bases: exceptions.Exception

Base class for Policy violations.

	
class tiddlyweb.model.policy.Policy(owner=None, read=None, write=None, create=None, delete=None, manage=None, accept=None)

	Bases: object

A container for information about the contraints on a bag or recipe. Both are containers of
tiddlers. We need to
be able to control who can do what to do those tiddlers. We also
need to be able to control who can manage those constraints.

The :pu:func:__init__ parameters represent a default policy.

There are six constraints plus one identifying attribute (owner).
The constraints are listed below with descriptions of what is allowed
if the constraint passes.

	read

	View this entity in lists. View the contained entities.

	write

	Edit the contained entities that already exist.

	create

	Create new entities in the container.

	delete

	Remove a contained entity.

	manage

	Change the policy itself.

	accept

	Accept the entity into the container without requiring
validation.

	
allows(usersign, constraint)

	Is the user encapsulated by the usersign dict allowed to
perform the action described by constraint. If so, return
True. If not raise a UserRequiredError (if the user is
GUEST) or ForbiddenError exception.

The dict has a name key with a string value which is a
username and a roles key with a list of roles as its value.
Either may match in the constraint. Usersign is usually populated
during the CredentialsExtractor phase of a
request.

	
attributes = [u'read', u'write', u'create', u'delete', u'manage', u'accept', u'owner']

	

	
user_perms(usersign)

	For this policy return a list of constraints for which
this usersign passes.

	
exception tiddlyweb.model.policy.UserRequiredError

	Bases: tiddlyweb.model.policy.PermissionsError

To do this action a user is required.

	
tiddlyweb.model.policy.create_policy_check(environ, entity, usersign)

	Determine if the user in usersign can create entity type.

recipe Module

The Recipe class.

	
class tiddlyweb.model.recipe.Recipe(name, desc=u'')

	Bases: object

A Recipe is an ordered list that represents a program for creating a
collection of tiddlers.

Each line in the recipe is the combination of a bag name and a filter
string. This implementation uses list of tuples.

In common usage a recipe contains only strings representing bags
and filters, but for the sake of easy testing, the bag argument
can be a Bag object.

A Recipe has a Policy
which can be used to control access to the Recipe. These controls are
optional and are primarily designed for use within the web
handlers.

	
get_recipe(template=None)

	Return the recipe list, as a list of tuple pairs.

	
set_recipe(recipe_list)

	Set the contents of the recipe list.

tiddler Module

A module containing the Tiddler class and related functions.

	
class tiddlyweb.model.tiddler.Tiddler(title=None, bag=None)

	Bases: object

The primary content object in the TiddlyWiki and TiddlyWeb universe,
representing a distinct piece of content, often vaguely
corresponding to a Page in wiki systems. A Tiddler has text and some
associated metadata. The text can be anything, often wikitext in
some form, or Javascript code. It is possible for a Tiddler to
container binary content, such as image data.

A Tiddler is intentionally solely a container of data. That is, it has
no methods which change the state of attributes in the Tiddler or
manipulate the tiddler. Changing the attributes is done by directly
changing the attributes. This is done to make the Tiddler easier to
store and serialize in many ways.

A Tiddler has several attributes:

	title

	The name of the tiddler. Required.

	created

	A string representing when this tiddler was created.

	modified

	A string representing when this tiddler was last changed.
Defaults to now.

	modifier

	A string representing a personage that changed this tiddler in
some way. This doesn’t necessarily have any assocation with the
tiddlyweb.usersign, though it may.

	tags

	A list of strings that describe the tiddler.

	fields

	An arbitrary dictionary of extended (custom) fields on the tiddler.

	text

	The contents of the tiddler. A string.

	revision

	The revision of this tiddler. The type of a revision is unspecified
and is store dependent.

	bag

	The name of the bag in which this tiddler exists, if any.

	recipe

	The name of the recipe in which this tiddler exists, if any.

	store

	A reference to the Store object
which retrieved this tiddler from persistent storage.

	
creator

	Get the creator of this tiddler. If it has not been
set then use modifier.

Use the creator property instead.

	
data_members = ['title', 'creator', 'created', 'modifier', 'modified', 'tags', 'fields', 'type', 'text']

	

	
slots = ['title', 'creator', 'created', 'modifier', 'modified', 'tags', 'fields', 'type', 'text', 'revision', 'bag', 'recipe', 'store']

	

	
tiddlyweb.model.tiddler.current_timestring()

	Translate the current UTC time into a TiddlyWiki conformat timestring.

	
tiddlyweb.model.tiddler.string_to_tags_list(string)

	Given a string representing tags (space-delimited, tags containing spaces
are enclosed in in double brackets), parse them into a list of tag strings.

Duplicates are removed.

	
tiddlyweb.model.tiddler.tags_list_to_string(tags)

	Given a list of tags, turn it into the canonical string representation
(space-delimited, enclosing tags containing spaces in double brackets).

	
tiddlyweb.model.tiddler.timestring_to_datetime(timestring)

	Turn a TiddlyWiki timestring into a datetime object.

Will raise ValueError if the input is not a 12 or 14
digit timestring.

user Module

A class representing a simple user entity.

A User object is not required during TiddlyWeb requests,
credentials extractors and policies may work with arbitrary data for
authentication and authorization. However if a locally stored user
is required the User may be used.

	
class tiddlyweb.model.user.User(usersign, note=None)

	Bases: object

A simple representation of a user. A user is a username, an optional
password, an optional list of roles, and an optional note.

	
add_role(role)

	Add the named role (a string) to this user.

	
check_password(candidate_password)

	Check the password for this user. Return True if correct.

	
del_role(role)

	Remove the named role (a string) from this user.
If it is not there, do nothing.

	
list_roles()

	List (as a list of strings) the roles that this
user has.

	
set_password(password)

	Set the password for this user.

serializations Package

serializations Package

Turn entities to and fro various representations.

This is the base class and interface class used to transform strings
of various forms to model objects and model objects to strings of various
forms.

	
class tiddlyweb.serializations.SerializationInterface(environ=None)

	Bases: object

A Serialization is a collection of methods that
either turn an input string into the object named
by the method, or turn the object into a string
form. A Serialization is not called directly, instead
a Serializer
facade is used.

The interface is fairly simple: For the core
entities that exist in the TiddlyWeb system (bags, recipes and tiddlers there (optionally) exists
<entity>_as and as_<entity> methods in each Serialization.

*_as returns a string form of the entity, perhaps as
HTML, Text, YAML, Atom, whatever the Serialization does.

as_* takes a provided entity and string and updates
the skeletal entity to use the information contained in the
string (in the Serialization format).

There are also three supporting methods, list_tiddlers(),
list_recipes() and list_bags() that provide convenience
methods for presenting a collection of entities in the
Serialization form. A string is returned.

Strings are usually unicode.

If a method doesn’t exist a NoSerializationError is raised
and the calling code is expected to do something intelligent
when trapping it.

	
as_bag(bag, input_string)

	Take input_string which is a serialized bag and use it
to populate the Bag in
bag (if possible).

	
as_recipe(recipe, input_string)

	Take input_string which is a serialized recipe and use it
to populate the Recipe
in recipe (if possible).

	
as_tags(string)

	Not called directly, but made public for future
use. Turn a string into a list of tags.

	
as_tiddler(tiddler, input_string)

	Take input_string which is a serialized tiddler and use it
to populate the Tiddler
in tiddler (if possible).

	
bag_as(bag)

	Serialize a Bag into
this serializer’s form.

	
list_bags(bags)

	Provided a list of bags,
make a serialized list of those bags (e.g. a a list of HTML
links).

	
list_recipes(recipes)

	Provided a list of recipes, make a serialized list of those
recipes (e.g. a a list of HTML links).

	
list_tiddlers(bag)

	Provided a bag, output the
associated tiddlers.

	
recipe_as(recipe)

	Serialize a :py:Recipe
into this serializer’s form.

	
tags_as(tags)

	Not called directly, but made public for future
use. Turn a list of tags into a serialized list.

	
tiddler_as(tiddler)

	Serialize a Tiddler
into this serializer’s form.

html Module

Serialization
for HTML.

HEADER and FOOTER can be overridden to change the basic framing
of the system.

	
class tiddlyweb.serializations.html.Serialization(environ=None)

	Bases: tiddlyweb.serializations.SerializationInterface

Serialize entities and collections to HTML representations. This
is primarily used to create browser based presentations. No support
is provided for turning HTML into entities.

Set css_uri in config to control
CSS.

Set tiddlyweb.links in environ to a list of <link>
elements to include those links in the output.

	
bag_as(bag)

	Bag as HTML,
including a link to the tiddlers within.

	
list_bags(bags)

	Yield the provided bags
as HTML.

	
list_recipes(recipes)

	Yield the provided recipes
as HTML.

	
list_tiddlers(tiddlers)

	Yield the provided tiddlers as HTML.

This is somewhat more complex than the other list methods as
we need to list the tiddler whether it is a revision or not,
if it is in a bag or recipe or if it is a search result.

	
recipe_as(recipe)

	Recipe as HTML,
including a link to the tiddlers within.

	
tiddler_as(tiddler)

	Transform the provided tiddler into an HTML representation.
Render the text of the tiddler
if its type is configured.

json Module

Serialization
for JSON.

	
class tiddlyweb.serializations.json.Serialization(environ=None)

	Bases: tiddlyweb.serializations.SerializationInterface

Turn entities and collections thereof to and from JSON.

	
as_bag(bag, input_string)

	Turn a JSON dictionary into a bag if it is in the proper form.
Include the policy.

	
as_recipe(recipe, input_string)

	Turn a JSON dictionary into a recipe if it is in the proper form.
Include the policy.

	
as_tiddler(tiddler, input_string)

	Turn a JSON dictionary into a tiddler. Any keys in the JSON
which are not recognized will be ignored.

	
bag_as(bag)

	A bag as a
JSON dictionary. Includes the bag’s policy.

	
list_bags(bags)

	Create a JSON list of bag
names from the provided bags.

	
list_recipes(recipes)

	Create a JSON list of recipe names from the provided recipes.

	
list_tiddlers(tiddlers)

	List the provided tiddlers as JSON. The format is a
list of dicts in the form described by _tiddler_dict().

If fat=1 is set in tiddlyweb.query include the text
of each tiddler in the output.

If render=1 is set in tiddlyweb.query include the
rendering of the text
of each tiddler in the output, if the tiddler is renderable.

	
recipe_as(recipe)

	A recipe as a
JSON dictionary. Includes the recipe’s policy.

	
tiddler_as(tiddler)

	Create a JSON dictionary representing a tiddler, as described by
_tiddler_dict() plus the text of the tiddler.

If fat=0 is set in tiddlyweb.query do not include the
text of the tiddler in the output.

If render=1 is set in tiddlyweb.query include the
rendering of the text
of the tiddler in the output, if the tiddler is renderable.

text Module

Serialization
for plain text.

	
class tiddlyweb.serializations.text.Serialization(environ=None)

	Bases: tiddlyweb.serializations.SerializationInterface

Serialize entities and collections to and from
textual representations. This is primarily used
by the text
Store.

	
as_recipe(recipe, input_string)

	Turn a string into a recipe if possible.

	
as_tiddler(tiddler, input_string)

	Transform a text representation of a tiddler into a tiddler object.

	
field = 'text'

	

	
fields_as(tiddler)

	Turn extended tiddler
fields into RFC 822-style header strings.

	
list_bags(bags)

	Return a linefeed separated list of bag names in the bags list.

	
list_recipes(recipes)

	Return a linefeed separated list of recipe names in the recipes list.

	
list_tiddlers(tiddlers)

	Return a linefeed separated list of tiddler titles in the tiddlers list.

If the tiddlers are a collection of revisions, include the
revision identifier.

	
recipe_as(recipe)

	Dump a recipe as text.

	
tiddler_as(tiddler, omit_empty=False, omit_members=None)

	Represent a tiddler
as a text string: headers, blank line, text.

omit_* arguments are non-standard options, usable only when this
method is called directly (outside the regular Serializer interface)

If omit_empty is True, don’t emit empty Tiddler members.

omit_members can be used to provide a list of members to not
include in the output.

	
tiddler_members = ['creator', 'created', 'modifier', 'modified', 'tags', 'type']

	

stores Package

stores Package

Storage systems for TiddlyWeb.

The base class and Interface for classes used to get and put data
into a storage system.

	
class tiddlyweb.stores.StorageInterface(store_config=None, environ=None)

	Bases: object

An implementation of the StorageInterface is a collection
of methods that either store an object or retrieve an object.
It is not usually access directly but instead called through
a Store facade.

The interface is fairly simple: For the data entities that
exist in the TiddlyWeb system there (optionally) exists
<entity>_put, <entity>_get and <entity>_delete
methods.

When <entity>_get is used, an empty object is provided.
This object is filled by the store method.

There are also five supporting methods, list_recipes(),
list_bags(), list_users(),
list_bag_tiddlers(), and list_tiddler_revisions()
that provide methods for getting a collection.

It is useful to understand the classes in the tiddlyweb.model
package when implementing new StorageInterface classes.

If a method is not implemented by the StorageInterface
a StoreMethodNotImplemented exception is
raised and the calling code is expected to handle that intelligently.

It is somewhat common to not implement list_tiddler_revisions().
When this is done it means the instance does not support revisions.

	
bag_delete(bag)

	Remove bag from the store,
including the tiddlers
contained by the bag.

	
bag_get(bag)

	Get the indicated bag
from the store.

	
bag_put(bag)

	Put bag into the store.

	
list_bag_tiddlers(bag)

	Retrieve a list of all tiddler objects in the named
bag.

	
list_bags()

	Retrieve a list of all bag objects in the system.

	
list_recipes()

	Retrieve a list of all recipe objects in the system.

	
list_tiddler_revisions(tiddler)

	Retrieve a list of all the revision identifiers
for the one tiddler.

	
list_users()

	Retrieve a list of all user objects in the system.

	
recipe_delete(recipe)

	Remove the recipe
from the store, with no impact on the recipe’s tiddlers.

	
recipe_get(recipe)

	Get the indicated recipe
from the store.

	
recipe_put(recipe)

	Put recipe
into the store.

	
search(search_query)

	Search the entire tiddler store for search_query.

How search operates is entirely dependent on the StorageInterface
implementation. The only requirement is that an iterator of
tiddler objects is returned.

	
tiddler_delete(tiddler)

	Delete tiddler
(and all its revisions) from the store.

	
tiddler_get(tiddler)

	Get a tiddler from the store, returning a populated tiddler
object. tiddler.creator and tiddler.created are based on
the modifier and modified of the first revision of a tiddler.

	
tiddler_put(tiddler)

	Put tiddler
into the store.

	
user_delete(user)

	Delete user from the store.

This will remove the user object but has no impact on other entities
which may have been modified by the user.

	
user_get(user)

	Get user from the store.

	
user_put(user)

	Put user into the store.

text Module

A text-based StorageInterface that stores entities
in a hierarchy of directories in the filesystem.

	
class tiddlyweb.stores.text.Store(store_config=None, environ=None)

	Bases: tiddlyweb.stores.StorageInterface

A StorageInterface
which stores text-based representations in a collection of directories
and files.

Some of the entities are serialized to and from text by the
text
Serializer.

	
bag_delete(bag)

	Delete bag and the
tiddlers within from
the system.

	
bag_get(bag)

	Fill bag with data
from the store.

	
bag_put(bag)

	Put bag into the store.

	
list_bag_tiddlers(bag)

	List all the tiddlers
in the provided bag.

	
list_bags()

	List all the bags
in the store.

	
list_recipes()

	List all the recipes
in the store.

	
list_tiddler_revisions(tiddler)

	List all the revisions of one tiddler, returning a list of ints.

	
list_users()

	List all the users
in the store.

	
recipe_delete(recipe)

	Remove a recipe,
irrevocably, from the system. No impact on tiddlers.

	
recipe_get(recipe)

	Fill recipe with
data in the store.

	
recipe_put(recipe)

	Put recipe
into the store.

	
search(search_query)

	Search in the store for tiddlers that match search_query.
This is intentionally implemented as a simple and limited grep
through files.

	
tiddler_delete(tiddler)

	Irrevocably remove tiddler from the filesystem.

	
tiddler_get(tiddler)

	Fill tiddler with
data from the store.

	
tiddler_put(tiddler)

	Write a tiddler
into the store. We only write if the tiddler’s bag already exists. Bag creation is a
separate action.

	
user_delete(user)

	Delete user from
the store.

	
user_get(user)

	Fill user with
data from the store.

	
user_put(user)

	Put user data into the store.

web Package

web Package

The routines, modules, etc. that are involved in the
presentation and handling of content over HTTP.

These are the parts that makes it TiddlyWeb, not Tiddly
something else.

challenge Module

WSGI App for running the base challenge system, which lists and links
to the available challengers. If there is only one
challenger, redirect to it.

	
tiddlyweb.web.challenge.base(environ, start_response)

	The basic listing page that shows all available
challenger systems. If there is only
one challenger, we redirect to that instead of listing.

	
tiddlyweb.web.challenge.challenge_get(environ, start_response)

	Dispatch a GET request to the chosen challenger.

	
tiddlyweb.web.challenge.challenge_post(environ, start_response)

	Dispatch a POST request to the chosen challenger.

extractor Module

Extract of user credentials from incoming web requests.
UserExtract passes to a stack of extractors. If an
extractor
returns something other than None, we have found
valid data with which to set tiddlyweb.usersign.

	
class tiddlyweb.web.extractor.UserExtract(application)

	Bases: object

WSGI Middleware to set the tiddlyweb.usersign, if it can
be found in the request.

listentities Module

Common code used for listing bags
and recipes in HTTP responses.

	
tiddlyweb.web.listentities.list_entities(environ, start_response, method_name, store_list=None, serializer_list=None)

	Get an optionally filtered list
of all the bags or
recipes
the current tiddlyweb.usersign can read.

negotiate Module

WSGI Middleware to do a limited version of content negotiation
and put the type in tiddlyweb.type. On GET and HEAD
requests the Accept header is examined. On POST and PUT,
Content-Type. If extensions are provided on a URI used in a GET
request if the extension matches something in extension_types in
config, the type indicated by the
extension wins over the Accept header.

	
class tiddlyweb.web.negotiate.Negotiate(application)

	Bases: object

Perform a form of content negotiation to provide information
to the WSGI environment that will later be used to choose
serializers.

	
tiddlyweb.web.negotiate.figure_type(environ)

	Determine either the Content-Type (for POST and PUT)
or Accept header (for GET) and put that information
in tiddlyweb.type in the WSGI environment.

query Module

WSGI Middleware that extracts CGI parameters from the
QUERY_STRING and puts them in tiddlyweb.query in the
environ in the same structure that cgi.py uses (dictionary of lists).
If the current request is a POST of HTML form data, parse that too.

	
class tiddlyweb.web.query.Query(application)

	Bases: object

Extract CGI parameter data from QUERY_STRING and POSTed form data.

	
extract_query(environ)

	Read the QUERY_STRING and body (if a POSTed form) to extract
query parameters. Put the results in tiddlyweb.query in
environ. The query names and values are decoded from UTF-8 to
unicode.

If there are file uploads in posted form data, the files are
not put into tiddlyweb.query. Instead the file handles are
appended to tiddlyweb.input_files.

sendentity Module

Send a bag or recipe out over HTTP, first serializing to the correct type.

This consolidates common code for bags and recipes.

	
tiddlyweb.web.sendentity.send_entity(environ, start_response, entity)

	Send a bag or recipe out over HTTP, first
serializing to
the correct type. If an incoming Etag validates, raise a
304 response.

sendtiddlers Module

Routines related to sending a list of tiddlers out to the web, including optionally
filtering those tiddlers and
validating cache-oriented request headers.

	
tiddlyweb.web.sendtiddlers.send_tiddlers(environ, start_response, tiddlers=None)

	Output the tiddlers
contained in the provided Tiddlers collection in a Negotiated representation.

serve Module

Functions and Classes for running a TiddlyWeb server, including
optionally a built in web server.

	
class tiddlyweb.web.serve.Configurator(application, config)

	Bases: object

WSGI middleware to set tiddlyweb.config in environ for
every request from config.

	
class tiddlyweb.web.serve.RequestStarter(application)

	Bases: object

WSGI middleware that logs basic request information and cleans
PATH_INFO in the environment.

PATH_INFO cleaning is done to ensure that there is a
well known encoding of special characters and to support
/ in entity names (see clean_path_info()).

	
clean_path_info(environ)

	Clean PATH_INFO in the environment.

This is necessary because WSGI servers tend to decode
the URI before putting it in PATH_INFO. This means that
uri encoded data, such as the %2F encoding of /
will be decoded before we get to route dispatch handling,
by which time the / is treated as a separator. People
say that the right thing to do here is not use %2F.
This is hogwash. The right thing to do is not decode
PATH_INFO. In this solution if REQUEST_URI is present
we use a portion of it to set PATH_INFO.

	
tiddlyweb.web.serve.load_app(app_prefix=None, dirname=None)

	Create our application from a series of layers. The innermost
layer is a Selector application based on urls_map defined in
config. This is surrounded by wrappers,
which either set something in the environment, modify the request,
or transform the response. The wrappers are WSGI middleware defined
by server_request_filters and server_response_filters in
tiddlyweb.config.

	
tiddlyweb.web.serve.start_server(config)

	Start a simple webserver, from wsgiref, to run our app.

util Module

General utility routines shared by various web related modules.

	
tiddlyweb.web.util.bag_etag(environ, bag)

	Construct an etag for a bag.

	
tiddlyweb.web.util.bag_url(environ, bag, full=True)

	Construct a URL for a bag.

	
tiddlyweb.web.util.check_bag_constraint(environ, bag, constraint)

	Check to see if the provided bag
allows the current tiddlyweb.usersign to perform the action described
by constraint. Lets NoBagError raise if the bag does not exist.

This is a web util because user and store come from the WSGI environ.

	
tiddlyweb.web.util.check_incoming_etag(environ, etag_string, cache_control='no-cache', last_modified=None, vary='Accept')

	Raise 304 if the provided etag_string is the same as that found
in the If-None-Match header of the incoming request.

Return incoming_etag to indicate if an etag was there but
did not match.

	
tiddlyweb.web.util.check_last_modified(environ, last_modified_string, etag='', cache_control='no-cache', vary='Accept')

	Raise 304 if an If-Modified-Since header matches
last_modified_string.

	
tiddlyweb.web.util.content_length_and_type(environ)

	For PUT or POST request there must be Content-Length and
Content-Type headers. Raise 400 if not present in the request.

	
tiddlyweb.web.util.datetime_from_http_date(http_datestring)

	Turn an HTTP formatted date into a datetime object.
Return None if the date string is invalid.

	
tiddlyweb.web.util.encode_name(name)

	Encode a unicode value as utf-8 and then URL encode that
string. Use for entity titles in URLs.

	
tiddlyweb.web.util.entity_etag(environ, entity)

	Construct an Etag from the digest of the JSON reprepresentation
of an entity.

The JSON representation provides a reasonably repeatable and
unique string of data.

	
tiddlyweb.web.util.escape_attribute_value(text)

	Escape common HTML character entities, including double quotes
in attribute values

This assumes values are enclosed in double quotes (key=”value”).

	
tiddlyweb.web.util.get_route_value(environ, name)

	Retrieve and decode name from data provided in WSGI route.

If name is not present in the route, allow KeyError to raise.

	
tiddlyweb.web.util.get_serialize_type(environ, collection=False, accept_type=False)

	Look in the environ to determine which serializer should be used for this request.

If collection is True, then the presence of an extension
on the URI which does not match any serializer should lead to a 415.

	
tiddlyweb.web.util.handle_extension(environ, resource_name)

	Look for an extension (as defined in config)
on the provided resource_name and trim it off to give the
“real” resource name.

	
tiddlyweb.web.util.html_encode(text)

	Encode &, < and > entities in text that will
be used in or as HTML.

	
tiddlyweb.web.util.html_frame(environ, title='')

	Return the header and footer from the current HTML
serialization.

	
tiddlyweb.web.util.http_date_from_timestamp(timestamp)

	Turn a modifier or created tiddler timestamp
into a properly formatted HTTP date. If the timestamp
is invalid use the current time as the timestamp.

	
tiddlyweb.web.util.make_cookie(name, value, mac_key=None, path=None, expires=None, httponly=True, domain=None)

	Create a cookie string, optionally with a MAC, path and
expires value. If expires is provided, its value should be
in seconds.

	
tiddlyweb.web.util.read_request_body(environ, length)

	Read the wsgi.input handle to get the request body.

Length is a required parameter because it is tested for existence
earlier in the process.

	
tiddlyweb.web.util.recipe_etag(environ, recipe)

	Construct an etag for a recipe.

	
tiddlyweb.web.util.recipe_url(environ, recipe, full=True)

	Construct a URL for a recipe.

	
tiddlyweb.web.util.server_base_url(environ)

	Using information in tiddlyweb.config, construct
the base URL of the server, without the trailing /.

	
tiddlyweb.web.util.server_host_url(environ)

	Generate the scheme and host portion of our server url.

	
tiddlyweb.web.util.tiddler_etag(environ, tiddler)

	Construct an etag for a tiddler from the tiddler’s attributes,
but not its text.

	
tiddlyweb.web.util.tiddler_url(environ, tiddler, container='bags', full=True)

	Construct a URL for a tiddler.

validator Module

A collection of routines for validating, santizing and otherwise messing
with content coming in from the web to be tiddlers, bags or recipes.

The validators can be extended by adding functions to the BAG_VALIDATORS,
RECIPE_VALIDATORS and TIDDLER_VALIDATORS. The functions take an
entity object, and an optional WSGI environ dict.

	
exception tiddlyweb.web.validator.InvalidBagError

	Bases: exceptions.Exception

The provided bag has not passed
a validation routine and has been rejected. The caller should stop
processing and return an error to calling code or user-agent.

	
exception tiddlyweb.web.validator.InvalidRecipeError

	Bases: exceptions.Exception

The provided recipe has
not passed a validation routine and has been rejected. The caller
should stop processing and return an error to calling code or
user-agent.

	
exception tiddlyweb.web.validator.InvalidTiddlerError

	Bases: exceptions.Exception

The provided tiddler
has not passed a validation routine and has been rejected.
The caller should stop processing and return an error to calling
code or user-agent.

	
tiddlyweb.web.validator.sanitize_desc(entity, environ)

	Strip any dangerous HTML which may be present in a bag or recipe description.

	
tiddlyweb.web.validator.sanitize_html_fragment(fragment)

	Santize an HTML fragment, returning a copy of the fragment
that has been cleaned up.

	
tiddlyweb.web.validator.validate_bag(bag, environ=None)

	Pass the bag to each of
the functions in BAG_VALIDATORS, in order, either changing
the content of the bags’s attributes, or if some aspect of the
bag can not be accepted raising InvalidBagError.

BAG_VALIDATORS may be extended by plugins.

validate_bag is called whenever a bag is PUT via HTTP.

	
tiddlyweb.web.validator.validate_recipe(recipe, environ=None)

	Pass the recipe to
each of the functions in RECIPE_VALIDATORS, in order, either
changing the content of the recipes’s attributes, or if some aspect
of the recipe can not be accepted raising InvalidRecipeError.

RECIPE_VALIDATORS may be extended by plugins.

validate_recipe is called whenever a recipe is PUT via HTTP.

	
tiddlyweb.web.validator.validate_tiddler(tiddler, environ=None)

	Pass the tiddler
to each of the functions in TIDDLER_VALIDATORS, in order,
either changing the content of the tiddler’s attributes, or if
some aspect of the tiddler can not be accepted raising
InvalidTiddlerError.

TIDDLER_VALIDATORS is an empty list which may be extended
by plugins.

validate_tiddler is called from web handlers, when the accept constraint on
the policy of the
bag containing the
tiddler does not pass.

wsgi Module

WSGI Middleware apps that haven’t gotten around to being extracted to
their own modules.

	
class tiddlyweb.web.wsgi.EncodeUTF8(application)

	Bases: object

WSGI Middleware to ensure that the unicode content sent out the
pipe is encoded to UTF-8. Within the application string-based content
is unicode (i.e. not encoded).

	
class tiddlyweb.web.wsgi.Header(application)

	Bases: object

If REQUEST_METHOD is HEAD, change it internally to GET and
consume the generated output so the response has no body.

	
class tiddlyweb.web.wsgi.PermissionsExceptor(application)

	Bases: object

Trap permissions exceptions and turn them into HTTP
exceptions so the errors are propagated to clients.

	
class tiddlyweb.web.wsgi.SimpleLog(application)

	Bases: object

WSGI Middleware to write a very simple log to stdout.

Borrowed from Paste Translogger

	
format = '%(REMOTE_ADDR)s - %(REMOTE_USER)s [%(time)s] "%(REQUEST_METHOD)s %(REQUEST_URI)s %(HTTP_VERSION)s" %(status)s %(bytes)s "%(HTTP_REFERER)s" "%(HTTP_USER_AGENT)s"'

	

	
write_log(environ, req_uri, status, size)

	Write the log info out in a formatted form to logging.info.

This is rather more complex than desirable because there is
a mix of str and unicode in the gathered data and it
needs to be made acceptable for output.

	
class tiddlyweb.web.wsgi.StoreSet(application)

	Bases: object

WSGI Middleware that sets our choice of Store in the environ. That is, initialize
the store for each request.

	
class tiddlyweb.web.wsgi.TransformProtect(application)

	Bases: object

WSGI Middleware to add a Cache-Control: no-transform` header
so that mobile companies that transcode content over their 3G (etc)
networks don’t, as it will break various JavaScript things,
including TiddlyWiki.

Subpackages

	challengers Package
	challengers Package

	cookie_form Module

	extractors Package
	extractors Package

	http_basic Module

	simple_cookie Module

	handler Package
	handler Package

	bag Module

	chronicle Module

	recipe Module

	search Module

	tiddler Module

challengers Package

challengers Package

The ChallengerInterface class.

	
class tiddlyweb.web.challengers.ChallengerInterface

	Bases: object

An interface for challenging users for authentication purposes.
The chalenger basically does whatever is required and may result
in doing something to a response that causes the user agent’s next
request to pass an extractor.

Though there is no requirement for there to be a one to one
correspondence between a Challenger and an Extractor, it will often be
the case that a Challenger will need a particular Extractor
in order to be effective.

A Challenger is a WSGI application.

	
challenge_get(environ, start_response)

	Respond to a GET request.

	
challenge_post(environ, start_response)

	Respond to a POST request.

cookie_form Module

A challenger
that presents or validates a form for getting a username and password.

	
class tiddlyweb.web.challengers.cookie_form.Challenger

	Bases: tiddlyweb.web.challengers.ChallengerInterface

A simple login challenger that asks the user agent, via an HTML form,
for a username and password and vaidates it against a User
entity in the store.

If valid, a cookie is set in the response. This is used in subsequent
requests by the simple_cookie credentials
extractor.

	
challenge_get(environ, start_response)

	Respond to a GET request by sending a form.

	
challenge_post(environ, start_response)

	Respond to a POST by processing data sent from a form.
The form should include a username and password. If it
does not, send the form aagain. If it does, validate
the data.

	
desc = 'TiddlyWeb username and password'

	

extractors Package

extractors Package

The ExtractorInterface class, used to extract and validate
information in web requests that may identify a user. Often,
but not always, that information was originally created by
a challenger.

	
class tiddlyweb.web.extractors.ExtractorInterface

	Bases: object

An interface for user extraction.

Given a WSGI environ, figure out if the request contains information
which can be used to identify a valid user. If it does, return a dict
including information about that user.

If it doesn’t return False.

	
extract(environ, start_response)

	Look at the incoming request and try to extract a user.

	
load_user(environ, usersign)

	Check the User database
in the store for a user
matching this usersign. The user is not required to exist, but if
it does it can be used to get additional information about the
user, such as roles.

http_basic Module

A very simple extractor that looks at the
HTTP Authorization header and looks for Basic auth information
therein.

	
class tiddlyweb.web.extractors.http_basic.Extractor

	Bases: tiddlyweb.web.extractors.ExtractorInterface

An extractor
for HTTP Basic Authentication. If there is an Authorization header
attempt to get a username and password out of it and compare with
User information in the
Store. If the password is valid,
return the user information. Otherwise return False.

	
extract(environ, start_response)

	Look in the request for an Authorization header.

simple_cookie Module

An extractor
that looks at a cookie named tiddlyweb_user.

	
class tiddlyweb.web.extractors.simple_cookie.Extractor

	Bases: tiddlyweb.web.extractors.ExtractorInterface

Look in the headers for a cookie named tiddlyweb_user.

If it is there and the associated hashed value validates against
a server side secret, return the indicated user.

	
extract(environ, start_response)

	Extract the cookie, if there, from the headers
and attempt to validate its contents.

handler Package

handler Package

Convenience routines for presenting the root of the web server.

Here because nowhere else seems right.

	
tiddlyweb.web.handler.root(environ, start_response)

	Convenience application to provide an entry point at root.

bag Module

Methods for accessing Bag entities.

	
tiddlyweb.web.handler.bag.delete(environ, start_response)

	Handle DELETE on a single bag URI.

Remove the bag and the
tiddlers within
from the store.

How the store chooses to handle remove and what it means is
up to the store.

	
tiddlyweb.web.handler.bag.get(environ, start_response)

	Handle GET on a single bag URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a bag (the bag itself, not the tiddlers within).

	
tiddlyweb.web.handler.bag.get_tiddlers(environ, start_response)

	Handle GET on a tiddlers-within-a-bag URI.

Get a list representation of the tiddlers in a bag.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.bag.list_bags(environ, start_response)

	Handle GET on the bags URI.

List all the bags that are
readable by the current usersign.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.bag.put(environ, start_response)

	Handle PUT on a single bag URI.

Put a bag to the server,
meaning the description and policy of the bag, if policy allows.

chronicle Module

A chronicle is a stack of tiddlers, usually revisions of
one tiddler. By POSTing a chronicle of tiddlers originally
named A to tiddler B, it is possible to rename a tiddler
while preserving revision history.

	
tiddlyweb.web.handler.chronicle.post_revisions(environ, start_response)

	Handle a POST of a chronicle of tiddlers at a tiddler revisions
URI.

Take a collection of JSON tiddlers, each with a
text key and value, and process them into the store.

recipe Module

Methods for accessing Recipe entities.

	
tiddlyweb.web.handler.recipe.delete(environ, start_response)

	Handle DELETE on a single recipe URI.

Delete a recipe.
This just removes the recipe, not any associated bags or tiddlers.

	
tiddlyweb.web.handler.recipe.get(environ, start_response)

	Handle GET on a single recipe URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a recipe (just the recipe itself,
not the tiddlers it can produce).

	
tiddlyweb.web.handler.recipe.get_tiddlers(environ, start_response)

	Handle GET on a tiddlers-within-a-recipe URI.

Get a list representation of the tiddlers generated from a recipe.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.recipe.list_recipes(environ, start_response)

	Handle GET on the recipes URI.

List all the recipes that are
readable by the current usersign.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.recipe.put(environ, start_response)

	Handle PUT on a single recipe URI.

Put a recipe to the server,
meaning the description, policy and recipe list of the recipe,
if policy allows.

search Module

Handle searches for tiddlers
if the configured store
supports search.

	
tiddlyweb.web.handler.search.get(environ, start_response)

	Handle GET on the search URI.

Perform a search against the store.

What search means and what results are returned is dependent
on the search implementation (if any) in the chosen store.

	
tiddlyweb.web.handler.search.get_search_query(environ)

	Inspect tiddlyweb.query in the
environment to find the search query in a parameter named q.

	
tiddlyweb.web.handler.search.get_tiddlers(environ)

	Call search in the store
to get the generator of tiddlers matching the query found
by get_search_query().

tiddler Module

Methods for accessing Tiddler
entities.

	
tiddlyweb.web.handler.tiddler.delete(environ, start_response)

	Handle DELETE on a single tiddler URI.

Delete a tiddler from
the store.

What delete means is up to the store.

	
tiddlyweb.web.handler.tiddler.get(environ, start_response)

	Handle GET on a single tiddler or tiddler revision URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a tiddler.

	
tiddlyweb.web.handler.tiddler.get_revisions(environ, start_response)

	Handle GET on the collection of revisions of single tiddler URI.

Get a list representation in some serialization determined by
tiddlyweb.web.negotiate of the revisions of a tiddler.

	
tiddlyweb.web.handler.tiddler.put(environ, start_response)

	Handle PUT on a single tiddler URI.

Put a tiddler to
the server.

	
tiddlyweb.web.handler.tiddler.validate_tiddler_headers(environ, tiddler)

	Check ETag and last modified header information to
see if a) on GET the user agent can use its cached tiddler
b) on PUT we have edit contention.

challengers Package

challengers Package

The ChallengerInterface class.

	
class tiddlyweb.web.challengers.ChallengerInterface

	Bases: object

An interface for challenging users for authentication purposes.
The chalenger basically does whatever is required and may result
in doing something to a response that causes the user agent’s next
request to pass an extractor.

Though there is no requirement for there to be a one to one
correspondence between a Challenger and an Extractor, it will often be
the case that a Challenger will need a particular Extractor
in order to be effective.

A Challenger is a WSGI application.

	
challenge_get(environ, start_response)

	Respond to a GET request.

	
challenge_post(environ, start_response)

	Respond to a POST request.

cookie_form Module

A challenger
that presents or validates a form for getting a username and password.

	
class tiddlyweb.web.challengers.cookie_form.Challenger

	Bases: tiddlyweb.web.challengers.ChallengerInterface

A simple login challenger that asks the user agent, via an HTML form,
for a username and password and vaidates it against a User
entity in the store.

If valid, a cookie is set in the response. This is used in subsequent
requests by the simple_cookie credentials
extractor.

	
challenge_get(environ, start_response)

	Respond to a GET request by sending a form.

	
challenge_post(environ, start_response)

	Respond to a POST by processing data sent from a form.
The form should include a username and password. If it
does not, send the form aagain. If it does, validate
the data.

	
desc = 'TiddlyWeb username and password'

	

extractors Package

extractors Package

The ExtractorInterface class, used to extract and validate
information in web requests that may identify a user. Often,
but not always, that information was originally created by
a challenger.

	
class tiddlyweb.web.extractors.ExtractorInterface

	Bases: object

An interface for user extraction.

Given a WSGI environ, figure out if the request contains information
which can be used to identify a valid user. If it does, return a dict
including information about that user.

If it doesn’t return False.

	
extract(environ, start_response)

	Look at the incoming request and try to extract a user.

	
load_user(environ, usersign)

	Check the User database
in the store for a user
matching this usersign. The user is not required to exist, but if
it does it can be used to get additional information about the
user, such as roles.

http_basic Module

A very simple extractor that looks at the
HTTP Authorization header and looks for Basic auth information
therein.

	
class tiddlyweb.web.extractors.http_basic.Extractor

	Bases: tiddlyweb.web.extractors.ExtractorInterface

An extractor
for HTTP Basic Authentication. If there is an Authorization header
attempt to get a username and password out of it and compare with
User information in the
Store. If the password is valid,
return the user information. Otherwise return False.

	
extract(environ, start_response)

	Look in the request for an Authorization header.

simple_cookie Module

An extractor
that looks at a cookie named tiddlyweb_user.

	
class tiddlyweb.web.extractors.simple_cookie.Extractor

	Bases: tiddlyweb.web.extractors.ExtractorInterface

Look in the headers for a cookie named tiddlyweb_user.

If it is there and the associated hashed value validates against
a server side secret, return the indicated user.

	
extract(environ, start_response)

	Extract the cookie, if there, from the headers
and attempt to validate its contents.

handler Package

handler Package

Convenience routines for presenting the root of the web server.

Here because nowhere else seems right.

	
tiddlyweb.web.handler.root(environ, start_response)

	Convenience application to provide an entry point at root.

bag Module

Methods for accessing Bag entities.

	
tiddlyweb.web.handler.bag.delete(environ, start_response)

	Handle DELETE on a single bag URI.

Remove the bag and the
tiddlers within
from the store.

How the store chooses to handle remove and what it means is
up to the store.

	
tiddlyweb.web.handler.bag.get(environ, start_response)

	Handle GET on a single bag URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a bag (the bag itself, not the tiddlers within).

	
tiddlyweb.web.handler.bag.get_tiddlers(environ, start_response)

	Handle GET on a tiddlers-within-a-bag URI.

Get a list representation of the tiddlers in a bag.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.bag.list_bags(environ, start_response)

	Handle GET on the bags URI.

List all the bags that are
readable by the current usersign.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.bag.put(environ, start_response)

	Handle PUT on a single bag URI.

Put a bag to the server,
meaning the description and policy of the bag, if policy allows.

chronicle Module

A chronicle is a stack of tiddlers, usually revisions of
one tiddler. By POSTing a chronicle of tiddlers originally
named A to tiddler B, it is possible to rename a tiddler
while preserving revision history.

	
tiddlyweb.web.handler.chronicle.post_revisions(environ, start_response)

	Handle a POST of a chronicle of tiddlers at a tiddler revisions
URI.

Take a collection of JSON tiddlers, each with a
text key and value, and process them into the store.

recipe Module

Methods for accessing Recipe entities.

	
tiddlyweb.web.handler.recipe.delete(environ, start_response)

	Handle DELETE on a single recipe URI.

Delete a recipe.
This just removes the recipe, not any associated bags or tiddlers.

	
tiddlyweb.web.handler.recipe.get(environ, start_response)

	Handle GET on a single recipe URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a recipe (just the recipe itself,
not the tiddlers it can produce).

	
tiddlyweb.web.handler.recipe.get_tiddlers(environ, start_response)

	Handle GET on a tiddlers-within-a-recipe URI.

Get a list representation of the tiddlers generated from a recipe.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.recipe.list_recipes(environ, start_response)

	Handle GET on the recipes URI.

List all the recipes that are
readable by the current usersign.

The information sent is dependent on the serialization chosen
via tiddlyweb.web.negotiate.

	
tiddlyweb.web.handler.recipe.put(environ, start_response)

	Handle PUT on a single recipe URI.

Put a recipe to the server,
meaning the description, policy and recipe list of the recipe,
if policy allows.

search Module

Handle searches for tiddlers
if the configured store
supports search.

	
tiddlyweb.web.handler.search.get(environ, start_response)

	Handle GET on the search URI.

Perform a search against the store.

What search means and what results are returned is dependent
on the search implementation (if any) in the chosen store.

	
tiddlyweb.web.handler.search.get_search_query(environ)

	Inspect tiddlyweb.query in the
environment to find the search query in a parameter named q.

	
tiddlyweb.web.handler.search.get_tiddlers(environ)

	Call search in the store
to get the generator of tiddlers matching the query found
by get_search_query().

tiddler Module

Methods for accessing Tiddler
entities.

	
tiddlyweb.web.handler.tiddler.delete(environ, start_response)

	Handle DELETE on a single tiddler URI.

Delete a tiddler from
the store.

What delete means is up to the store.

	
tiddlyweb.web.handler.tiddler.get(environ, start_response)

	Handle GET on a single tiddler or tiddler revision URI.

Get a representation in some serialization determined by
tiddlyweb.web.negotiate of a tiddler.

	
tiddlyweb.web.handler.tiddler.get_revisions(environ, start_response)

	Handle GET on the collection of revisions of single tiddler URI.

Get a list representation in some serialization determined by
tiddlyweb.web.negotiate of the revisions of a tiddler.

	
tiddlyweb.web.handler.tiddler.put(environ, start_response)

	Handle PUT on a single tiddler URI.

Put a tiddler to
the server.

	
tiddlyweb.web.handler.tiddler.validate_tiddler_headers(environ, tiddler)

	Check ETag and last modified header information to
see if a) on GET the user agent can use its cached tiddler
b) on PUT we have edit contention.

wikitext Package

wikitext Package

Functions for rendering any tiddler that has been identified as wikitext
into the rendered form (usually HTML) of that wikitext.

Wikitext rendering is engaged when a tiddler is requested via a
GET, when the negotiated media-type of the request is html,
and when tiddler.type is either None or in the keys of the
dictionary associated with the
tiddlyweb.config['wikitext.type_render_map'].

When tiddler.type is None, the renderer named in
tiddlyweb.config['wiktext.default_renderer'] is used. This is
either a module in the tiddlyweb.wikitext package,
or a module on sys.path.

When tiddler.type is something other than None, the renderer is
determined by looking up the type in
tiddlyweb.config['wikitext.type_render_map']. The found value is a
module of the same type described above.

The renderer module has a function render.

	
tiddlyweb.wikitext.render_wikitext(tiddler=None, environ=None)

	Take a tiddler
and render wikitext in tiddler.text to some kind of HTML format.

raw Module

A default simple wikitext renderer which does not render the wikitext
but instead wraps it in pre tags.

	
tiddlyweb.wikitext.raw.render(tiddler, environ)

	Wrap HTML encoded wikitext with pre tags.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tiddlyweb	

 	
 	
 tiddlyweb.commands	

 	
 	
 tiddlyweb.commands.interact	

 	
 	
 tiddlyweb.config	

 	
 	
 tiddlyweb.control	

 	
 	
 tiddlyweb.filters	

 	
 	
 tiddlyweb.filters.limit	

 	
 	
 tiddlyweb.filters.select	

 	
 	
 tiddlyweb.filters.sort	

 	
 	
 tiddlyweb.manage	

 	
 	
 tiddlyweb.model	

 	
 	
 tiddlyweb.model.bag	

 	
 	
 tiddlyweb.model.collections	

 	
 	
 tiddlyweb.model.policy	

 	
 	
 tiddlyweb.model.recipe	

 	
 	
 tiddlyweb.model.tiddler	

 	
 	
 tiddlyweb.model.user	

 	
 	
 tiddlyweb.serializations	

 	
 	
 tiddlyweb.serializations.html	

 	
 	
 tiddlyweb.serializations.json	

 	
 	
 tiddlyweb.serializations.text	

 	
 	
 tiddlyweb.serializer	

 	
 	
 tiddlyweb.specialbag	

 	
 	
 tiddlyweb.store	

 	
 	
 tiddlyweb.stores	

 	
 	
 tiddlyweb.stores.text	

 	
 	
 tiddlyweb.util	

 	
 	
 tiddlyweb.web	

 	
 	
 tiddlyweb.web.challenge	

 	
 	
 tiddlyweb.web.challengers	

 	
 	
 tiddlyweb.web.challengers.cookie_form	

 	
 	
 tiddlyweb.web.extractor	

 	
 	
 tiddlyweb.web.extractors	

 	
 	
 tiddlyweb.web.extractors.http_basic	

 	
 	
 tiddlyweb.web.extractors.simple_cookie	

 	
 	
 tiddlyweb.web.handler	

 	
 	
 tiddlyweb.web.handler.bag	

 	
 	
 tiddlyweb.web.handler.chronicle	

 	
 	
 tiddlyweb.web.handler.recipe	

 	
 	
 tiddlyweb.web.handler.search	

 	
 	
 tiddlyweb.web.handler.tiddler	

 	
 	
 tiddlyweb.web.listentities	

 	
 	
 tiddlyweb.web.negotiate	

 	
 	
 tiddlyweb.web.query	

 	
 	
 tiddlyweb.web.sendentity	

 	
 	
 tiddlyweb.web.sendtiddlers	

 	
 	
 tiddlyweb.web.serve	

 	
 	
 tiddlyweb.web.util	

 	
 	
 tiddlyweb.web.validator	

 	
 	
 tiddlyweb.web.wsgi	

 	
 	
 tiddlyweb.wikitext	

 	
 	
 tiddlyweb.wikitext.raw	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (tiddlyweb.model.collections.Collection method)

 	(tiddlyweb.model.collections.Tiddlers method)

 	add_role() (tiddlyweb.model.user.User method)

 	allows() (tiddlyweb.model.policy.Policy method)

 	as_bag() (tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	as_int() (in module tiddlyweb.filters.sort)

 	
 	as_recipe() (tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.text.Serialization method)

 	as_tags() (tiddlyweb.serializations.SerializationInterface method)

 	as_tiddler() (tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.text.Serialization method)

 	attributes (tiddlyweb.model.policy.Policy attribute)

B

 	
 	Bag (class in tiddlyweb.model.bag)

 	bag_as() (tiddlyweb.serializations.html.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.json.Serialization method)

 	bag_delete() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	bag_etag() (in module tiddlyweb.web.util)

 	bag_get() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	
 	bag_in_recipe() (in module tiddlyweb.filters.select)

 	bag_put() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	bag_url() (in module tiddlyweb.web.util)

 	BagFormatError

 	base() (in module tiddlyweb.web.challenge)

 	binary_tiddler() (in module tiddlyweb.util)

C

 	
 	challenge_get() (in module tiddlyweb.web.challenge)

 	(tiddlyweb.web.challengers.ChallengerInterface method)

 	(tiddlyweb.web.challengers.cookie_form.Challenger method)

 	challenge_post() (in module tiddlyweb.web.challenge)

 	(tiddlyweb.web.challengers.ChallengerInterface method)

 	(tiddlyweb.web.challengers.cookie_form.Challenger method)

 	Challenger (class in tiddlyweb.web.challengers.cookie_form)

 	ChallengerInterface (class in tiddlyweb.web.challengers)

 	check_bag_constraint() (in module tiddlyweb.web.util)

 	check_incoming_etag() (in module tiddlyweb.web.util)

 	
 	check_last_modified() (in module tiddlyweb.web.util)

 	check_password() (tiddlyweb.model.user.User method)

 	clean_path_info() (tiddlyweb.web.serve.RequestStarter method)

 	Collection (class in tiddlyweb.model.collections)

 	complete() (tiddlyweb.commands.interact.TabCompleter method)

 	Configurator (class in tiddlyweb.web.serve)

 	Container (class in tiddlyweb.model.collections)

 	content_length_and_type() (in module tiddlyweb.web.util)

 	create_policy_check() (in module tiddlyweb.model.policy)

 	creator (tiddlyweb.model.tiddler.Tiddler attribute)

 	current_timestring() (in module tiddlyweb.model.tiddler)

D

 	
 	data_members (tiddlyweb.model.tiddler.Tiddler attribute)

 	date_to_canonical() (in module tiddlyweb.filters.sort)

 	datetime_from_http_date() (in module tiddlyweb.web.util)

 	default_func() (in module tiddlyweb.filters.select)

 	del_role() (tiddlyweb.model.user.User method)

 	delete() (in module tiddlyweb.web.handler.bag)

 	(in module tiddlyweb.web.handler.recipe)

 	(in module tiddlyweb.web.handler.tiddler)

 	(tiddlyweb.store.Store method)

 	
 	desc (tiddlyweb.web.challengers.cookie_form.Challenger attribute)

 	determine_bag_for_tiddler() (in module tiddlyweb.control)

 	determine_bag_from_recipe() (in module tiddlyweb.control)

E

 	
 	encode_name() (in module tiddlyweb.web.util)

 	EncodeUTF8 (class in tiddlyweb.web.wsgi)

 	entity_etag() (in module tiddlyweb.web.util)

 	escape_attribute_value() (in module tiddlyweb.web.util)

 	extract() (tiddlyweb.web.extractors.ExtractorInterface method)

 	(tiddlyweb.web.extractors.http_basic.Extractor method)

 	(tiddlyweb.web.extractors.simple_cookie.Extractor method)

 	
 	extract_query() (tiddlyweb.web.query.Query method)

 	Extractor (class in tiddlyweb.web.extractors.http_basic)

 	(class in tiddlyweb.web.extractors.simple_cookie)

 	ExtractorInterface (class in tiddlyweb.web.extractors)

F

 	
 	field (tiddlyweb.serializations.text.Serialization attribute)

 	field_in_fields() (in module tiddlyweb.filters.select)

 	fields_as() (tiddlyweb.serializations.text.Serialization method)

 	figure_type() (in module tiddlyweb.web.negotiate)

 	filter_tiddlers() (in module tiddlyweb.control)

 	
 	FilterError

 	FilterIndexRefused

 	ForbiddenError

 	format (tiddlyweb.web.wsgi.SimpleLog attribute)

 	from_string() (tiddlyweb.serializer.Serializer method)

G

 	
 	get() (in module tiddlyweb.web.handler.bag)

 	(in module tiddlyweb.web.handler.recipe)

 	(in module tiddlyweb.web.handler.search)

 	(in module tiddlyweb.web.handler.tiddler)

 	(tiddlyweb.store.Store method)

 	get_bag_retriever() (in module tiddlyweb.specialbag)

 	get_entity() (in module tiddlyweb.store)

 	get_recipe() (tiddlyweb.model.recipe.Recipe method)

 	
 	get_revisions() (in module tiddlyweb.web.handler.tiddler)

 	get_route_value() (in module tiddlyweb.web.util)

 	get_search_query() (in module tiddlyweb.web.handler.search)

 	get_serialize_type() (in module tiddlyweb.web.util)

 	get_tiddlers() (in module tiddlyweb.web.handler.bag)

 	(in module tiddlyweb.web.handler.recipe)

 	(in module tiddlyweb.web.handler.search)

 	get_tiddlers_from_bag() (in module tiddlyweb.control)

 	get_tiddlers_from_recipe() (in module tiddlyweb.control)

H

 	
 	handle() (in module tiddlyweb.manage)

 	handle_extension() (in module tiddlyweb.web.util)

 	Header (class in tiddlyweb.web.wsgi)

 	
 	hexdigest() (tiddlyweb.model.collections.Collection method)

 	html_encode() (in module tiddlyweb.web.util)

 	html_frame() (in module tiddlyweb.web.util)

 	http_date_from_timestamp() (in module tiddlyweb.web.util)

I

 	
 	init() (in module tiddlyweb.commands)

 	initialize_logging() (in module tiddlyweb.util)

 	
 	InvalidBagError

 	InvalidRecipeError

 	InvalidTiddlerError

L

 	
 	launch_shell() (in module tiddlyweb.commands.interact)

 	limit() (in module tiddlyweb.filters.limit)

 	limit_parse() (in module tiddlyweb.filters.limit)

 	list_bag_tiddlers() (tiddlyweb.store.Store method)

 	(tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	list_bags() (in module tiddlyweb.web.handler.bag)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.html.Serialization method)

 	(tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.text.Serialization method)

 	(tiddlyweb.serializer.Serializer method)

 	(tiddlyweb.store.Store method)

 	(tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	list_entities() (in module tiddlyweb.web.listentities)

 	list_recipes() (in module tiddlyweb.web.handler.recipe)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.html.Serialization method)

 	(tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.text.Serialization method)

 	(tiddlyweb.serializer.Serializer method)

 	(tiddlyweb.store.Store method)

 	(tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	
 	list_roles() (tiddlyweb.model.user.User method)

 	list_tiddler_revisions() (tiddlyweb.store.Store method)

 	(tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	list_tiddlers() (tiddlyweb.serializations.html.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.text.Serialization method)

 	(tiddlyweb.serializer.Serializer method)

 	list_users() (tiddlyweb.store.Store method)

 	(tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	load_app() (in module tiddlyweb.web.serve)

 	load_user() (tiddlyweb.web.extractors.ExtractorInterface method)

 	LockError

M

 	
 	make_command() (in module tiddlyweb.manage)

 	
 	make_cookie() (in module tiddlyweb.web.util)

 	merge_config() (in module tiddlyweb.util)

N

 	
 	Negotiate (class in tiddlyweb.web.negotiate)

 	NoBagError

 	NoRecipeError

 	
 	NoSerializationError

 	NoTiddlerError

 	NoUserError

P

 	
 	parse_for_filters() (in module tiddlyweb.filters)

 	PermissionsError

 	PermissionsExceptor (class in tiddlyweb.web.wsgi)

 	Policy (class in tiddlyweb.model.policy)

 	post_revisions() (in module tiddlyweb.web.handler.chronicle)

 	
 	pseudo_binary() (in module tiddlyweb.util)

 	put() (in module tiddlyweb.web.handler.bag)

 	(in module tiddlyweb.web.handler.recipe)

 	(in module tiddlyweb.web.handler.tiddler)

 	(tiddlyweb.store.Store method)

Q

 	
 	Query (class in tiddlyweb.web.query)

R

 	
 	read_config() (in module tiddlyweb.util)

 	read_request_body() (in module tiddlyweb.web.util)

 	read_utf8_file() (in module tiddlyweb.util)

 	readable_tiddlers_by_bag() (in module tiddlyweb.control)

 	Recipe (class in tiddlyweb.model.recipe)

 	recipe_as() (tiddlyweb.serializations.html.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.text.Serialization method)

 	recipe_delete() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	recipe_etag() (in module tiddlyweb.web.util)

 	
 	recipe_get() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	recipe_put() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	recipe_template() (in module tiddlyweb.control)

 	recipe_url() (in module tiddlyweb.web.util)

 	RecipeFormatError

 	recursive_filter() (in module tiddlyweb.filters)

 	render() (in module tiddlyweb.wikitext.raw)

 	render_wikitext() (in module tiddlyweb.wikitext)

 	renderable() (in module tiddlyweb.util)

 	RequestStarter (class in tiddlyweb.web.serve)

 	root() (in module tiddlyweb.web.handler)

S

 	
 	sanitize_desc() (in module tiddlyweb.web.validator)

 	sanitize_html_fragment() (in module tiddlyweb.web.validator)

 	search() (tiddlyweb.store.Store method)

 	(tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	select_by_attribute() (in module tiddlyweb.filters.select)

 	select_parse() (in module tiddlyweb.filters.select)

 	select_relative_attribute() (in module tiddlyweb.filters.select)

 	send_entity() (in module tiddlyweb.web.sendentity)

 	send_tiddlers() (in module tiddlyweb.web.sendtiddlers)

 	Serialization (class in tiddlyweb.serializations.html)

 	(class in tiddlyweb.serializations.json)

 	(class in tiddlyweb.serializations.text)

 	SerializationInterface (class in tiddlyweb.serializations)

 	Serializer (class in tiddlyweb.serializer)

 	server_base_url() (in module tiddlyweb.web.util)

 	server_host_url() (in module tiddlyweb.web.util)

 	set_password() (tiddlyweb.model.user.User method)

 	
 	set_recipe() (tiddlyweb.model.recipe.Recipe method)

 	sha() (in module tiddlyweb.util)

 	SimpleLog (class in tiddlyweb.web.wsgi)

 	slots (tiddlyweb.model.tiddler.Tiddler attribute)

 	sort_by_attribute() (in module tiddlyweb.filters.sort)

 	sort_parse() (in module tiddlyweb.filters.sort)

 	SpecialBagError

 	start_server() (in module tiddlyweb.web.serve)

 	std_error_message() (in module tiddlyweb.util)

 	StorageInterface (class in tiddlyweb.stores)

 	Store (class in tiddlyweb.store)

 	(class in tiddlyweb.stores.text)

 	StoreEncodingError

 	StoreError

 	StoreLockError

 	StoreMethodNotImplemented

 	StoreSet (class in tiddlyweb.web.wsgi)

 	string_to_tags_list() (in module tiddlyweb.model.tiddler)

 	superclass_name() (in module tiddlyweb.util)

T

 	
 	TabCompleter (class in tiddlyweb.commands.interact)

 	tag_in_tags() (in module tiddlyweb.filters.select)

 	tags_as() (tiddlyweb.serializations.SerializationInterface method)

 	tags_list_to_string() (in module tiddlyweb.model.tiddler)

 	text_in_text() (in module tiddlyweb.filters.select)

 	Tiddler (class in tiddlyweb.model.tiddler)

 	tiddler_as() (tiddlyweb.serializations.html.Serialization method)

 	(tiddlyweb.serializations.SerializationInterface method)

 	(tiddlyweb.serializations.json.Serialization method)

 	(tiddlyweb.serializations.text.Serialization method)

 	tiddler_delete() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	tiddler_etag() (in module tiddlyweb.web.util)

 	tiddler_get() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	tiddler_members (tiddlyweb.serializations.text.Serialization attribute)

 	tiddler_put() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	tiddler_url() (in module tiddlyweb.web.util)

 	TiddlerFormatError

 	Tiddlers (class in tiddlyweb.model.collections)

 	tiddlyweb (module)

 	tiddlyweb.commands (module)

 	tiddlyweb.commands.interact (module)

 	tiddlyweb.config (module)

 	tiddlyweb.control (module)

 	tiddlyweb.filters (module)

 	tiddlyweb.filters.limit (module)

 	tiddlyweb.filters.select (module)

 	tiddlyweb.filters.sort (module)

 	tiddlyweb.manage (module)

 	tiddlyweb.model (module)

 	tiddlyweb.model.bag (module)

 	tiddlyweb.model.collections (module)

 	tiddlyweb.model.policy (module)

 	tiddlyweb.model.recipe (module)

 	tiddlyweb.model.tiddler (module)

 	tiddlyweb.model.user (module)

 	
 	tiddlyweb.serializations (module)

 	tiddlyweb.serializations.html (module)

 	tiddlyweb.serializations.json (module)

 	tiddlyweb.serializations.text (module)

 	tiddlyweb.serializer (module)

 	tiddlyweb.specialbag (module)

 	tiddlyweb.store (module)

 	tiddlyweb.stores (module)

 	tiddlyweb.stores.text (module)

 	tiddlyweb.util (module)

 	tiddlyweb.web (module)

 	tiddlyweb.web.challenge (module)

 	tiddlyweb.web.challengers (module)

 	tiddlyweb.web.challengers.cookie_form (module)

 	tiddlyweb.web.extractor (module)

 	tiddlyweb.web.extractors (module)

 	tiddlyweb.web.extractors.http_basic (module)

 	tiddlyweb.web.extractors.simple_cookie (module)

 	tiddlyweb.web.handler (module)

 	tiddlyweb.web.handler.bag (module)

 	tiddlyweb.web.handler.chronicle (module)

 	tiddlyweb.web.handler.recipe (module)

 	tiddlyweb.web.handler.search (module)

 	tiddlyweb.web.handler.tiddler (module)

 	tiddlyweb.web.listentities (module)

 	tiddlyweb.web.negotiate (module)

 	tiddlyweb.web.query (module)

 	tiddlyweb.web.sendentity (module)

 	tiddlyweb.web.sendtiddlers (module)

 	tiddlyweb.web.serve (module)

 	tiddlyweb.web.util (module)

 	tiddlyweb.web.validator (module)

 	tiddlyweb.web.wsgi (module)

 	tiddlyweb.wikitext (module)

 	tiddlyweb.wikitext.raw (module)

 	TiddlyWebREPL (class in tiddlyweb.commands.interact)

 	timestring_to_datetime() (in module tiddlyweb.model.tiddler)

 	to_string() (tiddlyweb.serializer.Serializer method)

 	TransformProtect (class in tiddlyweb.web.wsgi)

U

 	
 	usage() (in module tiddlyweb.manage)

 	User (class in tiddlyweb.model.user)

 	user_delete() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	user_get() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	
 	user_perms() (tiddlyweb.model.policy.Policy method)

 	user_put() (tiddlyweb.stores.StorageInterface method)

 	(tiddlyweb.stores.text.Store method)

 	UserExtract (class in tiddlyweb.web.extractor)

 	UserRequiredError

V

 	
 	validate_bag() (in module tiddlyweb.web.validator)

 	validate_recipe() (in module tiddlyweb.web.validator)

 	
 	validate_tiddler() (in module tiddlyweb.web.validator)

 	validate_tiddler_headers() (in module tiddlyweb.web.handler.tiddler)

W

 	
 	write_lock() (in module tiddlyweb.util)

 	write_log() (tiddlyweb.web.wsgi.SimpleLog method)

 	
 	write_unlock() (in module tiddlyweb.util)

 	write_utf8_file() (in module tiddlyweb.util)

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		TiddlyWeb

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

